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Abstract

We investigate the Khovanov homology, introduced in [4], of an embedded link. A detailed computa-
tion for the trefoil is provided, along with two diffirent proofs of invariance under Reidemeister moves -
using a Frobenius algebra and a 2 -dimensional topological quantum field theory.
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0.0 Introduction

This is an expository paper on the properties of Khovanov’s homology of a knot, with extensions to tangles.
The approach mirrors [2] and [3], but with a more complete analysis. The method of this paper may be
described as understanding and proving the commutativity of the following diagram:

(a diagram D)

(a diagram D′)

⎛
⎜
⎜
⎜
⎝

a cubical
simplicial
complex
in 2Cob

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎝

a cubical
simplicial
complex
in 2Cob

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎝

a cubical
simplicial
complex
in Vect

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎝

a cubical
simplicial
complex
in Vect

⎞
⎟
⎟
⎟
⎠

⎛

⎝

Khovanov’s
homology

of L

⎞

⎠

Kh(L)

(a link L) J(L)

resolutions

resolutions

field theory

field theory

cohomology
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ri
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ic

Jones polynomial

The terms introduced here are explained further below, with the exception of Vect, the category of vector
spaces. It is used throughout, but further no reference will be made to it. Also, the reduction of Khovanov’s
homology to the Jones polynomial will only be discussed briefly at the very end.

Credit is given to David M.R. Jackson and Aaron Smith for endless support and advice on the material.
The proofs (the last two at the end of the paper) that are left incomplete are as such solely due to time and
mental constraints of the author.

1 Motivating remarks

Definition 1.1. (resolution) Given a link L embedded in the plane as a diagram D, and a crossing c of the
D, a resolution at c is a small neighborhood of careplaced by one of two neighborhoods. The neighborhoods
are called a 0-resolution and a 1-resolution.

0-resolution 1-resolution

A diagram D with resolutions at all crossings is termed a complete resolution of D, or simply a resolution of
D. If we order all the k crossings of a diagram D, every complete resolution of D may be assigned a string
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in {0,1}k. For example

L =

1

2

L00 = L01 = L10 = L11 =

Definition 1.2. (x(L), y(L)) Given a link L and an orientation on each component of L, an embedding in
the plane of L yields at mosttwo types of crossings. Let x(L) denote the number of crossings of the first
type, and y(L) the number of crossings of the second type.

contributes 1 to x(L) contributes 1 to y(L)

Although x(L) and y(L) are dependent upon the embedding D of L, we will use the described notation,
hopefully without confusion.

1.1 Associating a link to a chain complex

Given a link L and a complete resolution of its embedded diagram D, we will have a number of simple closed
curves that do not intersect in the plane. To each such curve we may associate a 2-dimensional vector space,
and express the whole diagram as a tensor product of the assigned vector spaces. Note that in the case of
tangles, we may not make such an assumption in general.

If D has n crossings, then we may form a chain group by taking the direct sum for m = 0, . . . , n of all the
spaces with m 0-resolutions and (n−m) 1-resolutions. We may then form a cochain complex indexed by m,
with an appropriate boundary operator, described in more detail in the next section.

It is natural to take the cohomology of this cochain complex, and in this case, the resulting cohomology
theory is termed the Khovanov homology of L. Instead of using the whole theory as an invariant, we may
represent the main information in a polynomial.

Definition 1.3. (Kh(L)) Given a link L and a chain complex C(L) associated to an embedding of L, define
the Khovanov homology of L to be

Kh(L) = ∑
r

trqdim(Hr
(C(L)))

This is a polynomial (termed the Khovanov polynomial) in t and q. The q-dimension comes into play by,
given a graded (over k) vector space W , letting qdim(W ) = ∑k q

k dim(Wk).
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2 An extended example

In this section we will go through a meticulous calculation of the Khovanov homology of a knot. Let L
be the trefoil knot. Give L an embedding and an orientation, and label the edges between intersections in
sequence, choosing an arbitrary starting point. We choose to fix the data as below.

L =

13

46

2

5

(2.1)

This embedding of L has three intersections, and each intersection has one of two possible resolutions, so
there are 23 = 8 diagrams, associated with L, of simple closed curves that do not intersect each other. Arrange
these 8 diagrams on the vertices of a 3-square so that the strings in {0,1}3 associated with ends of each edge
differ in exactly one coordinate. The presentation in (2.2) does this, also placing diagrams with the same
number of 1-resolutions in the same column, beginning with no 1-resolutions in the left-most column.

(2.2)

To each diagram associate a tensor product of as many vector spaces V as connected components (equiv-
alently, closed curves). This space is V = span{v+, v−}, where degV (v+) = 1 and degV (v−) = −1. The assigned
vector spaces are labeled Vi, where the index i is the smallest edge label of edges contained in the component.
For example,

13

46

2

5

Vmin{1,4,2,5} = V1

Vmin{3,6} = V3

The vector spaces are arranged in increasing numerical order, so the diagram above is labelled V1 ⊗ V3.
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Next, to each edge of the 3-cube we associate a boundary map, moving left to right (left to right duo to the
specific presentation in (2.2)). These maps are between spaces with a different number of tensored spaces
Vi, so we need a standard way of increasing and decreasing the number of tensored spaces. This is done by
using a multipliciation and a co-multiplication, defined as follows:

m ∶ V ⊗ V → V ∆ ∶ V → V ⊗ V
v− ⊗ v− ↦ 0 v− ↦ v− ⊗ v−
v− ⊗ v+ ↦ v− v+ ↦ v+ ⊗ v− + v− ⊗ v+
v+ ⊗ v− ↦ v−
v+ ⊗ v+ ↦ v+

(2.3)

We present the cube of diagrams of (2.2) again with all maps and spaces labeled in (2.4). The boundary
maps dα for a string α ∈ {0,1,−}3 are labeled to indicate which intersections do and do not change resolution
types.

V1 ⊗ V2

V1

V1

V1

V1 ⊗ V2

V1 ⊗ V2

V1 ⊗ V3

V1 ⊗ V2 ⊗ V3

d−00

d0−0

d00−

d1−0

d10−

d−10

d01−

d−01

d0−1

d11−

d1−1

d−11

(2.4)

The edges maps dα explicitly are:

d−00 ∶ v1 ⊗ v2 ↦m(v1 ⊗ v2) d1−0 ∶ v1 ↦∆(v1) d11− ∶ v1 ⊗ v2 ↦∆(v1)[1] ⊗ v2 ⊗∆(v1)[2]
d0−0 ∶ v1 ⊗ v2 ↦m(v1 ⊗ v2) d10− ∶ v1 ↦∆(v1) d1−1 ∶ v1 ⊗ v2 ↦ v1 ⊗∆(v2)

d0−0 ∶ v1 ⊗ v2 ↦m(v1 ⊗ v2) d−10 ∶ v1 ↦∆(v1) d−11 ∶ v1 ⊗ v3 ↦∆(v1) ⊗ v3

d01− ∶ v1 ↦∆(v1)

d−01 ∶ v1 ↦∆(v1)

d0−1 ∶ v1 ↦∆(v1)

The symbol ∆(vi)[j] represents the jth of the two tensored elements in ∆(vi). The expression ∆(v1) in the
case of the map d11− had to be split, as the component labeled V1 becomes V1 ⊗ V3, but due to ordering, V2

is tensored between them in the image.

The next step is to combine the spaces into chain groups, and ”collapse” the whole cube into a chain complex.
Each column of diagrams will become a space represented by the direct sum of the associated vector spaces:

C0
(L) = V ⊗2 C1

(L) = V ⊕3 C2
(L) = (V ⊗2

)
⊕3 C3

(L) = V ⊗3

The superscript m in Cm(L) indicates how many 1-resolutions the the associated diagrams have. Further,
each set of maps between a pair of columns becomes a boundary map of the cochain complex, by an adjusted
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sum of the maps dα. Defining the new boundary maps di, we introduce RRαRR, which represents the sum of
the elements in the string α, with ”−” having value 0, and ᾱ, a coefficient that ensures anti-commutativity
among the subcomplexes. Anti-commutativity in the cube of diagrams in (2.4) is necessary for the cochain
boundary map te have the property dr ○ dr−1 = 0.

dr ∶ Cr → Cr+1
= ∑

RRαRR=r

(−1)ᾱdα ᾱ = ∑
i < index of −

RRRαiRRR

Note that in (2.4) the maps dα with (−1)ᾱ = −1 are indicated by a dot ● at one end. Hence we have:

d0
= d−00 + d0−0 + d00−

d1
= −d1−0 − d10− + d−10 − d01− + d−01 + d0−1

d2
= d11− − d1−1 + d−11

It remains to check that these maps are indeed boundary maps, i.e. that they satisfy the chain complex
boundary map condition.

Proposition 2.1. The map dr is a boundary map. Equivalently, dr+1 ○ dr(x) = 0 for all x ∈ Cr(L).

Proof: Proving this statement is equivalent to making each ”face” of the whole cube in (2.4) anti-commute.
Since each face has an odd number of boundary maps with negative multipliers, the faces do indeed anti-
commute. ∎

These maps and chain groups produce a cochain complex, termed ⟦L⟧:

V ⊗2
{0}

d0

ÐÐ→ V ⊕3
{1}

d1

ÐÐ→ (V ⊗2)
⊕3

{2}
d2

ÐÐ→ (V ⊗3) {3}

The elements in the brackets {⋅} denote the degree shift of each complex, which encodes the number of
1-resolutions of diagrams associated to the each cochain space. We construct another, adjusted cochain
complex, termed C(L), where each cochain space W{i} from ⟦L⟧ becomes W{i + x(L) − 2y(L)}, and each
boundary operator dr from ⟦L⟧ becomes dr−y(L). In our case, x(L) = 3 and y(L) = 0, so C(L) is the complex

V ⊗2
{3}

d0

ÐÐ→ V ⊕3
{4}

d1

ÐÐ→ (V ⊗2)
⊕3

{5}
d2

ÐÐ→ (V ⊗3) {6}

Definition 1.3 now follows naturally, as Kh(L) = ∑r t
rqdim(Hr(C(L))) is the Poincare polynomial of the

graded cochain complex C(L).

To calculate the rth cohomolgy of C(L), it is necessary to calculate im(dr) and ker(dr) for all r = 0,1,2 and
then take the appropriate quotients. This we will now do in explicit detail. The tensor symbol ⊗ is omitted
where convenient.

d0
∶ V ⊗2

{3} → V ⊕3
{4}

⎡
⎢
⎢
⎢
⎢
⎢
⎣

d−00

d0−0

d00−

⎤
⎥
⎥
⎥
⎥
⎥
⎦

[v−v−] =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

d−00

d0−0

d00−

⎤
⎥
⎥
⎥
⎥
⎥
⎦

[v−v+] =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

v−
v−
v−

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

d−00

d0−0

d00−

⎤
⎥
⎥
⎥
⎥
⎥
⎦

[v+v−] =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

v−
v−
v−

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

d−00

d0−0

d00−

⎤
⎥
⎥
⎥
⎥
⎥
⎦

[v+v+] =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

v+
v+
v+

⎤
⎥
⎥
⎥
⎥
⎥
⎦

im(d0
) = ⟨v⊕3

−
, v⊕3
+

⟩ qdim(im(d0
)) = q3

+ q5

ker(d0
) = ⟨v−v−, v−v+ − v+v−⟩ qdim(ker(d0

)) = q1
+ q3
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d1
∶ V ⊕3

{4} → (V ⊗2)
⊕3

{5}

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−d1−0 d10− 0
−d10− 0 −d−01

0 d01− d0−1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

v−
0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−v−v−
−v−v−

0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−d1−0 d10− 0
−d10− 0 −d−01

0 d01− d0−1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

v+
0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−v+v− − v−v+
−v+v− − v−v+

0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−d1−0 d10− 0
−d10− 0 −d−01

0 d01− d0−1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
v−
0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

v−v−
0

−v−v−

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−d1−0 d10− 0
−d10− 0 −d−01

0 d01− d0−1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
v+
0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

v+v+ − v−v+
0

−v+v− − v−v+

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−d1−0 d10− 0
−d10− 0 −d−01

0 d01− d0−1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
0
v−

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
v−v−
v−v−

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−d1−0 d10− 0
−d10− 0 −d−01

0 d01− d0−1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
0
v+

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
v+v− + v−v+
v+v− + v−v+

⎤
⎥
⎥
⎥
⎥
⎥
⎦

im(d1
) = ⟨

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−v−v−
−v−v−

0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎣

v−v−
0

−v−v−

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−v+v− − v−v+
−v+v− − v−v+

0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎣

v+v+ − v−v+
0

−v+v− − v−v+

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⟩ qdim(im(d1
)) = 2q3

+ 2q5

ker(d1
) = ⟨

⎡
⎢
⎢
⎢
⎢
⎢
⎣

v−
0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
v−
0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
0
v−

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎣

v+
0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
v+
0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
0
v+

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⟩ qdim(ker(d1
)) = q3

+ q5

d2
∶ (V ⊗2)

⊕3
{5} → V ⊗3

{6}

[d11− −d1−1 d−11]

⎡
⎢
⎢
⎢
⎢
⎢
⎣

v−v−
0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= [v−v−v−] [d11− −d1−1 d−11]

⎡
⎢
⎢
⎢
⎢
⎢
⎣

v−v+
0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= [v−v+v−]

[d11− −d1−1 d−11]

⎡
⎢
⎢
⎢
⎢
⎢
⎣

v+v−
0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= [v+v−v− + v−v−v+] [d11− −d1−1 d−11]

⎡
⎢
⎢
⎢
⎢
⎢
⎣

v+v+
0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= [v+v+v− + v−v+v+]

[d11− −d1−1 d−11]

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
v−v−

0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= [−v−v−v−] [d11− −d1−1 d−11]

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
v−v+

0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= [−v−v+v− − v−v−v+]

[d11− −d1−1 d−11]

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
v+v−

0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= [−v+v−v−] [d11− −d1−1 d−11]

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
v+v+

0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= [−v+v+v− − v+v−v+]

[d11− −d1−1 d−11]

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
0

v−v−

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= [v−v−v−] [d11− −d1−1 d−11]

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
0

v−v+

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= [v−v−v+]

[d11− −d1−1 d−11]

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
0

v+v−

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= [v+v−v− + v−v+v−] [d11− −d1−1 d−11]

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
0

v+v+

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= [v+v−v+ + v−v+v+]
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im(d2
) = ⟨[v−v+v−], [v−v+v−], [−v+v−v−], [v−v−v+], [v+v−v− + v−v−v+], [−v+v+v− − v+v−v+], [v+v−v+ + v−v+v+]⟩

ker(d2
) = ⟨

⎡
⎢
⎢
⎢
⎢
⎢
⎣

v−v−
0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
v−v−

0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎣

v−v−
0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

−

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
0

v−v−

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎣

v−v+
0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎢
⎣

v+v−
0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
v−v+

0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
v+v−

0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

− 2

⎡
⎢
⎢
⎢
⎢
⎢
⎣

v−v+
0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

−

⎡
⎢
⎢
⎢
⎢
⎢
⎣

v+v−
0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

−

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
v−v+

0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
0

v+v−

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎣

v−v+
0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
v−v+

0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
0

v−v+

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⟩

qdim(im(d2
)) = 5q5

+ 2q7 qdim(ker(d2
)) = 2q3

+ 3q5

Now we calculate the cohomology groups.

t0qdim(H0
(C(L))) = qdim(ker(d0

)) = q1
+ q3

More explicitly, q has the exponent 1 because in the kernel ker(d0), the element v−v− has degree −2, and
since it is located in V ⊗2{3} which has a degree shift of 3, the qdim of that part is q−2+3 = q1. The same
analogously goes for the other exponent.

t1qdim(H1
(C(L))) = t1qdim(ker(d1

)/im(d0
)) = t1qdim(1) = 0

This follows as ker(d1) = im(d0).

t2qdim(H2
(C(L))) = t2qdim(ker(d2

)/im(d1
)) = t2qdim(V {5}) = t2q5

This follows as the first three terms, as presented above, in both ker(d2) and im(d1) are the same, and the
last term in im(d1) is a linear combination of the last two terms in ker(d2), which both have dimension 0,
so the resulting space has only one of these terms, of dimension 0 + 5.

t3qdim(H3
(C(L))) = t3qdim(ker(d3

)/im(d2
)) = t3q9

This follows as ker(d3) = V ⊗3{6}, the whole space to which d2 maps, and the only basis element of this space
that is not in the image of d2 is v+v+v+. This element has degree 3 in V ⊗3{6}, so its q-dimension is q3+6 = q9.
Therefore

Kh(L) = q1
+ q5

+ t2q5
+ t3q9

This completes the example.

We now move to consider the tools applied here in a more abstract setting, describing the natural relations
between the structures introduced here, and existing ones in other fields of study.
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3 Parallels to other branches of mathematics

3.1 2-dimensional topological quantum field theories

In the interests of generality (while noting the lack of its recurrence in this paper), we present Atiyah’s
abstract definition, from [1], of a 2-dimensional topological quantum field theory over a ring Λ. It is:

⋅ A finitely-generated Λ-module Σ(Z) associated to each oriented closed smooth 1-dimensional
manifold Σ
⋅ An element Z(M) ∈ Z(∂M) associated to each oriented smooth 2-dimensional (with boundary)
manifold M

Moreover, Z is functorial, involutory, and multiplicative. It may be viewed as a monoidal functor Z ∶

Cob1+1 →ModR from the category of closed, oriented 1-manifolds.

In our case, Σ(Z) = V , the 1-dimensional manifolds are closed simple curves, and hence the 2-dimensional
manifolds are simply manifolds that connect these curves, cobordisms. Each vertex of a cube of resolutions,
as in (2.2), is a collection of closed simple curves, or cycles, so the idea of a cobordism between the vertices
may be applied to each edge. Take, for example, two adjacent vertices v1 and v2 from (2.2).

v1 = ≈ v2 = ≈

Being adjacent means they are cobordant, so the edge (v1, v2) may be represented as:

(v1, v2) =

This cobordism is termed the pair of pants. Moreover, every edge of a cube of resolutions may be associated
with a pair of pants (or an inverse pair of pants - given by the edge from v2 to v1 above) and a finite number
of cylinders, where a cylinder is a cobordism between and . This is almost immediately clear, with the
observation that if one vertex has a nested pair of circles, then the cobordism relating it an adjacent vertex
without this nested pair is still a pair of pants. Another example from (2.2) demonstrates this.

v1 = ≈ ≈ v2 = ≈

The smaller circle nested inside the larger circle is brought out for the cobordism to resemble the standard
presentation of the pair of pants.

(v1, v2) = ≈ ≈

≈ ≈ ≈
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However, once we associate cycles in the TQFT to elements in the Frobenius algebra, the issue of an
ambient space becomes irrelevant, as the algebra is associative. Although the above diagram helps visualize
the scenario, we may simply move the nested cycle to the outside, while keeping both cycles on the same
plane.

3.2 The Frobenius algebra

A Frobenius algebra A (see [6] for a very thorough investigation) is an associative bi-algebra over a field K
with a bilinear form (termed the Frobenius form). Being a bi-algebra, it has a multiplication A⊗A→ A and
a co-multiplication A → A ⊗ A. As previously we had pairs of vector spaces combining, and vector spaces
splitting in two, the relation is natural.

Indeed, the geometric intuition is identical to that of topological quantum field theories presented above,
and as in [6], the identification is often made immediately. As defined in (2.3), the co-multiplication ∆
corresponds to the pair of pants and the multiplication m corresponds to the inverse pair of pants.

3.3 The category nCob

There is also a relation to category theroy, where nCob is the category containing n-dimensional cobordisms as
morphisms, and (n−1)-dimensional manifolds as objects. The category 2Cob is the most relevant here, where
the objects are all isomorphically circles, or cycles, and the morphisms are the 2-dimensional cobordisms
already introduced.

3.4 A heuristic translation scheme

We now present a table comparing analogous ideas across the fields mentioned above. The relations are not
meant as strict identifications, but rather as analogies of the same idea through different interpretations.

category theory algebra cohomology theory topology

an object
in 2Cob

an algebra
a chain group of a

single-component diagram

n identical
objects in 2Cob

the tensor product of n
identical algebras

a chain group of an
n-component diagram

⋯
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n

a morphism from 2
objects to 1 object

multiplication
a boundary map
d ∶ V ⊗ V → V

a morphism from 1
object to 2 objects

co-multiplication
a boundary map
d ∶ V → V ⊗ V

the unit in a symmetric
monoidal category

the unit

the counit in a symmetric
monoidal category

the co-unit

Note that the last two cells in the cohomology theory column have been left empty. The interested reader is
invited to check, ameliorate, and complete this table of concepts.
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4 Invariance of the Khovanov homology

In this section we inspect the effect on the Khavonov homology under Reidemeister’s three moves R1, R2,
and R3. Extensive use will be made of the following proposition.

Proposition 4.1. Let C be a chain complex with a subcomplex C ′. If C ′ has no homology, then H●(C) =

H●(C/C ′). Further, if C/C ′ has no homolgy, then H●(C) =H●(C ′).

Proof: Consider the following short exact sequence of cochain complexes.

0Ð→ C ′
Ð→ C Ð→ C/C ′

Ð→ 0

To every cochain complex we may associate a cohomolgy group of every degree, giving a long exact sequence:

⋯ Ð→Hr−1
(C/C ′

) Ð→Hr
(C ′

) Ð→Hr
(C) Ð→Hr

(C/C ′
) Ð→Hr+1

(C ′
) Ð→ ⋯

Suppose that C ′ is acyclic, so Hr(C ′) = 0 for all r. Since the long sequence is exact, the exact sequence
0→Hr(C) →Hr(C/C ′) → 0 repeats for all r, and hence H●(C) =H●(C/C ′).

Similarly if C/C ′ is acyclic, then Hr(C/C ′) = 0 for all r, and 0→Hr(C ′) →Hr(C) → 0 is an exact sequence
for all r. As above, this means that H●(C) =H●(C ′). ∎

This will allow us to reduce large complexes to a more manageable size, while preserving all the relevant
information. We now fix a link L and a diagram D of L.

4.1 Invariance under R1

Recall that R1 removes a ”loop” from the knot. If we consider only a portion of a knot diagram, and leave
everything outside the dashed circle constant, then

←Ð
R1
ÐÐ→

In this section we will consider only the right-twist loop, as under the Reidemeister moves, it is the same as
the left-twist loop:

right-twist = ←Ð
R1
ÐÐ→ ←Ð

R2
ÐÐ→ ←Ð

R1
ÐÐ→ = left-twist

Let D be a link diagram embedded with an occurence of . Define

C = ⟦ ⟧ = the cochain complex associated with D
⋅ boundary map is d●C ∶ C● → C●+1

A = ⟦ ⟧ = the cochain complex associated with D having a 0-resolution at the presented crossing
⋅ boundary map is d●A ∶ A● → A●+1

B = ⟦ ⟧ = the cochain complex associated with D having a 1-resolution at the presented crossing
⋅ boundary map is d●B ∶ B● → B●+1

It is clear that each ofA,B,C are cochain complexes with proper boundary maps, i.e. d●+1
A d●A = 0 (equivalently

for B and C). Recall that n is the number of crossings of D, so we may write down the cochain complex of
C:

0Ð→ ⟦ ⟧
0 d0C
ÐÐ→ ⟦ ⟧

1 d1C
ÐÐ→ ⋯

dn−2C
ÐÐÐ→ ⟦ ⟧

n−1 dn−1C
ÐÐÐ→ ⟦ ⟧

n
Ð→ 0
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The cochain complexes of A and B are similar, but with cochain spaces only up to index n − 1. Next, we
claim that C is a cochain complex with cochain spaces A and B, and boundary map m:

⟦ ⟧ ∶ ⟦ ⟧
m
ÐÐ→ ⟦ ⟧{1} (4.1)

It is easier to see this by taking two copies of D, and giving resolutions to each crossing the same way in
both copies, except for the one that has the right-twist loop in it. Then the copy with a 0-resolution at this
crossing has one more cycle than the other copy, meaning that the multiplication map m● ∶ A● → B● must
be applied to move from the first copy to the other. This gives a commutative diagram

B● B●+1

A● A●+1

⋯ ⋯

⋯ ⋯

d●B

d●A

m● m●+1

d●+1
B d●−1

B

d●+1
A d●−1

A

This implies that m●+1d●A = d●Bm
●. Using this, we have another expression for d●C, namely

d●C = [
d●A 0
m● (−1)d●−1

B
] with d●+1

C d●C = [
d●+1
A d●A 0

m●+1d●A − d
●

Bm
● d●Bd

●−1
B

] = [
0 0
0 0

] (4.2)

Using the previous arguments, we may also express each cochain space of C as a direct sum of cochain spaces
of A and B.

C●
= A●

⊕B●
{1} = A●

⊕B●−1

Writing down all of these cochain spaces in this decomposition gives the diagram below, where columns are,
left to right, the cochain complexes C, A, and B.

0 0 0

⟦ ⟧
0

⟦ ⟧
0 0

⟦ ⟧
1

⟦ ⟧
1

⟦ ⟧
0

⋮ ⋮ ⋮

⟦ ⟧
n−1

⟦ ⟧
n−1

⟦ ⟧
n−2

⟦ ⟧
n

0 ⟦ ⟧
n−1

0 0 0

dC dA dB

dC dA dB

dC dA dB

dC dA dB

= ⊕

= ⊕

= ⊕

= ⊕

m0

mn−1

(4.3)

As mentioned, there is one more cycle in ⟦ ⟧ than in ⟦ ⟧ (call it the ”special cycle”). Let ⟦ ⟧v+ denote
the subspace of ⟦ ⟧ with the special cycle assigned the vector space V ′ = span{v+}. This gives a subcomplex
of C, denoted

C ′
∶ ⟦ ⟧v+

m
ÐÐ→ ⟦ ⟧{1}
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To see that C ′ is acyclic, first observe that for any argument x, we have m(x⊗ v+) =m(v+ ⊗ x) = x, so v+ is
a unit for m. Therefore the map m acts on ⟦ ⟧v+ as an isomorphsim:

m ∶ ⟦ ⟧v+ = v+ ⊗ ⟦ ⟧{1}
m
ÐÐ→ ⟦ ⟧{1}

Since ⟦ ⟧ is a subcomplex of ⟦ ⟧, and ⟦ ⟧v+ ≅ ⟦ ⟧, we have that ⟦ ⟧v+ is a subcomplex of ⟦ ⟧. Now
we have a sequence as below, which must be exact, as the two non-zero groups are isomorphic.

C ′
∶ 0

f1
ÐÐ→ ⟦ ⟧v+

m
ÐÐ→ ⟦ ⟧{1}

f2
ÐÐ→ 0

im(f1) = 0
ker(m) = 0

im(m) = ⟦ ⟧ {1}
ker(f2) = ⟦ ⟧ {1}

Ô⇒
H0(C ′) = 0
H1(C ′) = 0

All cohomology groups of C ′ are zero, so C ′ is acyclic. By Proposition 4.1, H●(C) =H●(C/C ′). The complex
C/C ′ is then given by

C/C ′
∶ ⟦ ⟧v− Ð→ 0

where the special cycle in ⟦ ⟧v− is assigned the vector space V ′′ = span{v−}. Therefore ⟦ ⟧v− is one-
dimensional, and so is isomorphic to ⟦ ⟧, the chain complex associated with D without a loop at the
crossing under discussion.

The degree shift of ⟦ ⟧v− is the same as that of ⟦ ⟧, as the crossing was a 0-smoothing. The height shift
is also the same for the two, so indeed, they are isomorphic.

4.1.1 An example

Consider the Hopf link L with R1 applied once, as in the following diagram.

D = 1 23

4

5

6

→

id,m

m

m

id,m

⟦ ⟧

⟦ ⟧

The part of the diagram representing the subcomplex ⟦ ⟧ of L is connected to the other part of the
diagram, representing the subcomplex ⟦ ⟧, by either the map m or a combination of m and id on each
edge, which take a tensor product of vector spaces to a single vector space.

13



4.2 Invariance under R2

Recall that R2 removes or introduces a pair of intersections from the knot. If we consider only a portion of
a knot, and leave everything outside the dashed circle constant, then

←Ð
R2
ÐÐ→

Let D be a link diagram embedded with an occurence of . The cube of resolutions of D may be presented
as a cube of resolutions with cochain complexes for vertices, denoted by C:

C ∶ ⟦ ⟧

⟦ ⟧ {1}

⟦ ⟧ {1}

⟦ ⟧ {2}

m ∆

(4.4)

Only two maps are labeled, as the other ones could be either m or ∆, depending on what the rest of the
diagram D looks like. Next we define a subcomplex C ′ of C and another complex C ′′, given by the diagrams:

C ′
∶ 0

0

⟦ ⟧v+ {1}

⟦ ⟧ {2}

∆

C ′′
∶ 0

⟦ ⟧ {1}

0

0 (4.5)

The complex C ′′ is essentially ⟦ ⟧, but shifted, for which we wish to find an equal complex. The space
indicated ⟦ ⟧v+ in the subcomplex C ′ indicates, as previously, that the special cycle is assigned the
subspace V ′ = span{v+}. Further, C ′ is acyclic for the same reasons as above, so H●(C) = H●(C/C ′). The
complex C/C ′ is computed also as above, and given below.

C/C ′
∶ ⟦ ⟧

⟦ ⟧ {1}

⟦ ⟧v− {1}

0

m

Given the boundary map d ∶ ⟦ ⟧ → ⟦ ⟧ and the bijective map m, define a new map τ ∶ ⟦ ⟧ → ⟦ ⟧

given by τ = d ○m−1. This induces a subcomplex C ′′′ of C/C ′, given by
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C ′′′
∶ ⟦ ⟧

τ (⟦ ⟧v− {1})

⟦ ⟧v− {1}

0

m

τ

Here we have all elements of ⟦ ⟧ and ⟦ ⟧, but only elements τα ∈ ⟦ ⟧ for some α ∈ ⟦ ⟧v− {1}. This
is a subcomplex of C/C ′ as the introduction of the map τ , by its definition, ensures that all images of maps are
still contained in the diagram. Moreover, as m is bijective (as the special cycle has one dimension and the rest
of the diagram is isomorphic to ⟦ ⟧), C ′′′ is acyclic in C/C ′, meaning that H(C) =H((C/C ′)/C ′′′). Then
(C/C ′)/C ′′′ is isomorphic to ⟦ ⟧, as the groups ⟦ ⟧ and ⟦ ⟧ disappear, leaving ⟦ ⟧ untouched.

(C/C ′
)/C ′′′

∶ 0

⟦ ⟧ {1}

0

0 = C ′′
≅ ⟦ ⟧

Therefore H(C) ≅H(⟦ ⟧), proving that the Khovanov homology is invariant under the R2 move.

4.2.1 An example

Consider an embedding of the trivial knot.

L = →

⟦ ⟧ ⟦ ⟧

⟦ ⟧⟦ ⟧

As previously, the vertices of the diagrams above are circled in the cube of this diagram.
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4.3 Invariance under R3

Recall that R3 moves a strand to the other side of an intersection. If we consider only a portion of a knot,
and leave everything outside the dashed circle constant, then

←Ð
R3
ÐÐ→

For ease of graphical presentation, the brackets ⟦⋅⟧ are dropped in this section, though whenever a diagram
is presented, we are referring to its associated complex.

Consider the cube of resolutions of both of these diagrams.

C ∶ C ∶ (4.6)

Observe that the bottom layer of C has the same diagrams as the bottom layer of C. Further, the top layer
of C is related to the top layer of C by the R2 move. In other words,

C ∶ C ∶

R2

≅

Using this observation, the proof will borrow methods from the previous section. In the same manner as for

R2 in (4.5), define new subcomplexes C ′ and C
′

of C and C, respectively. And again as previously, mod
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them by C and C, respectively.

C ′
∶

0

0

v+

C
′

∶

0

v+

0

C/C ′
∶

v−

0

τ

C/C
′

∶

v−
0

τ

Maps τ and τ have been indicated to construct further subcomplexes C ′′′ of C/C ′ and C
′′′

of C/C
′

. We
then mod the complexes by their respective subcomplexes to arrive at the desired result.

C ′′′
∶

τ
⎛
⎜
⎜
⎝ v−

⎞
⎟
⎟
⎠

v−

0

C
′′′

∶

v−

τ
⎛
⎜
⎜
⎝ v−

⎞
⎟
⎟
⎠

0

(C/C ′
) /C ′′′

∶

0 0

0

d1

d2

(C/C
′

) /C
′′′

∶

0

0 0

d1

d2

The two complexes (C/C
′

)/C
′′′

and (C/C ′
)/C ′′′ are isomorphic, as their bottom layers are identical, and

d2 ≅ τ ○ d1 and d1 ≅ τ ○ d2. The checking of these final isomorphisms is left to the curious reader.

5 Invariance (topological) of the Khovanov homology

This section proceeds as the previous section, but with topological instead of algebraic arguments. Before
we begin, we give one of the fundamental properties of cobordisms, namely the 4Tu property:

ab

c d

+

c d

ab

=

b

c d

a

+

d

ab

c

(5.1)

This property holds for a cobordism with a ball taken out that has four sections, as marked, going into it.

5.1 Invariance under R1

Let D be the diagram of L with a twist, and D′ the diagram of L without a twist. The goal of this section
is to show that the Khovanov homology is the same for both D and D′.

D D′

(5.2)
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Let D0 be the diagram of L with a 0-resolution at the crossing made by R1, and D1 the diagram of L with
a 1-resolution at the crossing made by R1.

D0 D1

We wish to relate the two complexes ⟦ ⟧ and ⟦ ⟧. We do this by showing that the diagram in (5.3) is
commutative, where F ∶ ⟦ ⟧ → ⟦ ⟧ is given by F = (F0, F1) and G ∶ ⟦ ⟧ → ⟦ ⟧ by G = (G0,G1). The
diagram has chain groups of the same degree in the same columns.

L
P
P
P
P
N

M
Q
Q
Q
Q
O

: 0 0

⟦ ⟧ : 0 0 0

d

h

GF F0 G0
F1 G1 (5.3)

The maps F1 and G1 are the zero maps.The map h is a homotopy that comes from the following diagram:

⋯ C●−1(D) C●(D) C●+1(D) ⋯

⋯ C●−1(D) C●(D) C●+1(D) ⋯

id
FG

id
FG

id
FG

h h
(5.4)

The following identities need to be proven for the diagram in (5.3) to commute, which will in turn prove in-
variance under R1. Note that the second equation in the first column is a statement about the commutativity
of the diagram in (5.4).

G0F0 = ID′ G0h = 0

F0G0 + hd = ID0 dF0 = 0

Let us first define the maps that we intend to use. They are given only for the region of the diagram under
consideration, with the rest of the diagram having the identity map applied to it. The action of the map
moves from the top of the cylinder to the bottom.

F0 = − G0 = d = h =

First we prove the simplest equalities:
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G0F0 = − ≈ 2 − = = ID′

The coefficient 2 appears in front of one of the terms as a surface of genus 1, unattached to the top or bottom
of the cobordism, contributes a factor of 2. The reasoning behind this is explained in Appendix A.

G0h = = 0 ⋅ = 0

The disjoint surface of genus 0 contributes a factor of 0, so the term vanishes.

dF0 = − = − = 0
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This calculation follows from isotopy. We are left with proving F0G0+hd = ID0 , which we claim follows from
the application of the 4Tu relation from (5.1). The identity we wish to show holds is:

F0G0 + hd = − + = = ID0

The 4Tu relation applied to the following cobordism is precisely that relation.

4Tu

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

≈

Ð→ + = +

Therefore, topologically, the Khovanov homology is invariant under the R1 move.

5.2 Invariance under R2

In this section we will use many of the previously used tactics. Begin with the same link L and two different
embeddings, D and D′.

D D′

(5.5)

The diagram D has 4 different smoothings, as labelled below.

D0 D1 D2 D3

(5.6)

The first on the left has two 0-resolutions and no 1-resolutions, the middle two have one of each type of
resolution, and the last one has two 1-resolutions and no 0-resolutions; the degree shifts should be noted.
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We employ the same complex presented in (4.4) to relate it to the chain complex of D′.

⟦ ⟧ : 0 0

⟦ ⟧ :

d01 d13

G1F1

G2F2

G0F0 G3F3

d02

h20

d23

h32

(5.7)

As previously in (5.3), each column has the same degree shift. Similar associations are made, most notably
that F0, F3,G0,G3 are all the zero map, and F1,G1 are the identity. The main maps are given by F =

(F0, F1, F2, F3) and G = (G0,G1,G2,G3). The identities that need to be proved are:

GF = G1F1 +G2F2 = ID′ Gd = G1d01 +G2d02 = 0

F2G2 − h32d23 − d02h20 = ID2 dF = d13F1 + d23F2 = 0

Analogously to the previous section, the maps h20 and h32 arise from a map h ∶ C●(D) → C●−1(D), as in the
diagram (5.4). Let us now define the non-trivial maps.

F2 = G2 = − h20 = − h32 = −

d01 = d02 = d13 = − d23 =

We begin with the simplest identities, involving G,F , and the boundary map d.

G1F1 +G2F2 = − ≈ − 0 ⋅ = = idD′
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Here we have again interpreted a manifold of genus zero as a factor of zero.

G1d01 +G2d02 = − ≈ − = 0

This argument, as well as the following one, is done by a simple isotopy.

d13F1 + d23F2 = − ≈ − = 0

The final equation remains, for which we will need to apply the 4Tu-relation. Let us cosider what we intend
to prove first:

F2G2 − h32d23 − d02h20 = − + + = = idD2
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Here we apply the 4Tu-relation as given in (5.1), but we switch the ends marked a and b in every diagram
of (5.1) to make the presentation clearer. The resulting equation is exactly the one given above.

4Tu

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

≈

Ð→ + = +

Therefore, topologically, the Khovanov homology is invariant under the R2 move.

5.3 Invariance under R3

In this section we we will introduce auxiliary definitions and lemmae to simplify the main proof, due to the
large size of the complexes involved.

Definition 5.1. (cone of a complex) Let (A,d0) and (B,d1) be two cochain complexes with maps Ψr ∶

(Ar, dr0) → (Br, dr1). Define the cone of Ψ to be the complex Γ(Ψ) with cochain spaces Ar+1 ⊕ Br and

differential d∗ = (
−dr+10 0

Ψr+1 dr1
), as depicted below.

⋯ Ar−1 Ar Ar+1 Ar+2 ⋯

⋯ Br−1 Br Br+1 Br+2 ⋅−

−dr−2
0 −dr−1

0 −dr0 −dr+1
0 −dr+2

0

dr−2
1 dr−1

1
dr1 dr+1

1 dr+2
1

Ψr−1 Ψr
Ψr+1 Ψr+2

ψr−1 ψr ψr+1

⊕ ⊕ ⊕

Next, we consider two lemmae that together will imply invariance of the Khovanov homology under
R3 without the lengthy cobordism calculations we dealt with previously to prove R1 and R2. The proofs
presented are sketches, and are not meant to be complete.

Lemma 5.2.
⟦ ⟧ = Γ (⟦ ⟧ → ⟦ ⟧) [−1] and ⟦ ⟧ = Γ (⟦ ⟧ → ⟦ ⟧)

Proof: We wil only inspect the first equation. Consider the cochain complex that results in splitting ⟦ ⟧

into its constituent chain complexes:

⋯ ⟦ ⟧
r−1

⟦ ⟧
r

⟦ ⟧
r+1 ⋯

⋯ ⟦ ⟧
r−1

⟦ ⟧
r

⟦ ⟧
r+1 ⋯

Then Γ(⟦ ⟧) is the complex with cochain spaces Γ(⟦ ⟧)r = ⟦ ⟧
r−1

⊕ ⟦ ⟧
r
. ∎

For the next lemma, we introduce a new idea.
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Definition 5.3. (strong deformation retract) Given two complexes A,B and a morphism G ∶ A→ B between
them, the map G is termed a strong deformation retract if there exists a morphism F ∶ B → A and a homotopy
h ∶ A● → A●−1 such that the following conditions are satisfied:

GF = idB FG = idA − dh − hd hF = 0 (5.8)

where d ∶ A● → A●+1 is the boundary operator for A. In this case, the map F is termed the inclusion of the
strong deformation retract.

Lemma 5.4. Let A,A′,B,B′ be cochain complexes related by maps as below.

Â A B B̂
Ψ

G0

F0

G1

F1

(5.9)

If G0 is a strong deformation retract with inclusion F0, then Γ(Ψ) is homotopy equivalent to Γ(ΨF0).
Similarly, if G1 is a strong deformation retract with inclusion F1, then Γ(Ψ) is homotopy equivalent to
Γ(F1Ψ).

Proof: Let h ∶ A● → A●−1 be the homotopy that satisfies the conditions of (5.8). Then the cones Γ(Ψ) and

Γ(ΨF0) induce morphisms F̃0, G̃0 and the homotopy h̃0, given by

F̃0 ∶ Γ(ΨF0) → Γ(Ψ)

G̃0 ∶ Γ(Ψ) → Γ(ΨF0)
h̃0 ∶ Γ(Ψ)

●
→ Γ(Ψ)

●−1

The rest follows from the considering the diagram below:

Γ(ΨF0) ∶

Γ(Ψ) ∶

⋯ Ar ⊕Br−1 Ar+1 ⊕Br Ar+2 ⊕Br+1 ⋯

⋯ Âr ⊕Br−1 Âr+1 ⊕Br Âr+2 ⊕Br+1 ⋯

d̃r−2 d̃r−1 d̃r d̃r+1

d̃r−2 d̃r−1 d̃r d̃r+1

h̃r−2
0 h̃r−1

0 h̃r0 h̃r+1
0

G̃r−1
0 F̃ r−1

0 G̃r0 F̃ r0 G̃r+1
0 F̃ r+1

0

The relentless reader is invited to complete the missing parts of this proof. ∎

Now we may move to actually proving the invariance of the Khovanov homology under R3. We do this
by showing that the two complexes associated with both stages of R3 are homotopic. Begin with the same
link L and two different embeddings, D and D′.

D D′

We now take the cubes of resolutions corresponding to D and D′, already presented in (4.6), and by Lemma
5.2 associate each to a cone of a two-term complex (each term is indicated below by a gray shaded plane).
To apply Lemma 5.4, we first associate the top layer with the bottom layer of the complex of R2, seen in
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(5.7). Now we apply the lemma and get a reduced complex homotopic to the original one.

⟦D⟧ ∶ ΨD

F ∗

2

G∗

2

F ∗

1
G∗

1

≈
F̃ ∗

2

G̃∗

2

F̃ ∗

1
G̃∗

1

⟦D′
⟧ ∶ ΨD′

F ∗

2

G∗

2

F ∗

1
G∗

1

≈
F̃ ∗

2

G̃∗

2

F̃ ∗

1
G̃∗

1

Note that the maps F0 and G0 from (5.9) are given by F0 = (F ∗

1 , F
∗

2 ) and G0 = (G∗

1,G
∗

2), where F1, F2,G1,G2

are the maps presented in (5.7), from the section on R2. The induced maps in the reduced complex are
induced analogs of those maps as well.

The two resulting complexes are isotopic, so invariance of the Khovanov homology under R3 follows.

6 Concluding remarks

6.1 Reduction to the Jones polynomial

Let us briefly touch on how the Khovanov homology may be reduced to yield the Jones polynomial. Above
we constructed cohomology groups Hn(C(L)). Then the Jones polynomial of a link L is given by

J(L) = ∑
i

(−1)iqdim(Hi
(C(L)))

The q-dimension of the cohomology groups is taken over the rationals. Note that this result follows by
simply comparing the state sum definition of the Jones polynomial with the definition of the graded Euler
characteristic.
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6.2 A note on grading

The cohomological groups constructed were graded in two ways, one in the degree shift, and the other by
the height shift. There also exists, by [5], a homology theory of groups graded in three ways, whose graded
Euler characteristic is revealed to be the HOMFLY-PT polynomial. Unfortunately, a deeper perusal of the
relation to this invariant is not undertaken here, and is left to the delighted reader.

A The structure of cobordisms

Let us consider the fundamental cobordisms and their associated actions.

k → V
1 ↦ v+

V → k
v+ ↦ 0
v− ↦ 1

V ⊗ V → V
v+v+ ↦ v+
v+v− ↦ v−
v−v+ ↦ v−
v−v− ↦ 0

V → V ⊗ V
v+ ↦ v+v− + v−v+
v− ↦ v−v−

V → V
v+ ↦ v+
v− ↦ v−

The first one follows as v+ is a unit for V . The second one follows from the definition of the counit. The
next two follow from the decided-upon definitions in (2.3), and the last one is the identity.

A.1 Isolated surfaces

We now consider the effect on a cobordism that contains a compact closed surface separate from the main
part of the cobordism.

The effect of an isolated ball on a cobordism is multiplication by 0:

=

1↦ v+ ↦ 0

The effect of an isolated torus on a cobordism is multiplication by 2:

=

1↦ v+ ↦ v+v− + v−v+ ↦ 2v− ↦ 2

The effect of an isolated surface of genus g ⩾ 2 on a cobordism is multiplication by 0:

⋯ = ⋯

1↦ v+ ↦ v+v− + v−v+ ↦ 2v− ↦ 2v−v− ↦ 0↦ ⋯↦ 0

26



References

[1] Michael Atiyah. Topological quantum field theories. Publications Mathmatiques de l’Institut des Hautes
tudes Scientifiques, 68(1), 1988.

[2] Dror Bar-Natan. On Khovanov’s categorification of the Jones polynomial. Algebraic & Geometric Topol-
ogy, 2, 2002.

[3] Dror Bar-Natan. Khovanov’s homology for tangles and cobordisms. Geometry & Topology, 9, 2005.

[4] Mikhail Khovanov. A categorification of the Jones polynomial. Duke Mathematical Journal, 101(3), 2000.

[5] Mikhail Khovanov. Link homology and categorification. In Proceedings of the International Congress of
Mathematicians. European Mathematical Society, 2000.

[6] Joachim Kock. Frobenius Algebras and 2D Topological Quantum Field Theories. Cambridge University
Press, 2003.

[7] Paul Turner. Five lectures on Khovanov homology. Available online at http://arxiv.org/abs/math/

0606464, 2006.

Department of Pure Mathematics, Faculty of Mathematics, University of Waterloo, Waterloo, Ontario, Canada
E-mail address: janis.lazovskis@uwaterloo.ca

27

http://arxiv.org/abs/math/0606464
http://arxiv.org/abs/math/0606464

	Introduction
	Motivating remarks
	Associating a link to a chain complex

	An extended example
	Parallels to other branches of mathematics
	2-dimensional topological quantum field theories
	The Frobenius algebra
	The category nCob
	A heuristic translation scheme

	Invariance of the Khovanov homology
	Invariance under R1
	Invariance under R2
	Invariance under R3

	Invariance (topological) of the Khovanov homology
	Invariance under R1
	Invariance under R2
	Invariance under R3

	Concluding remarks
	Reduction to the Jones polynomial
	A note on grading

	The structure of cobordisms
	Isolated surfaces


