
Abstract

This talk will explore the unifying role of simplices. First we show how to simplify persistent homology computations between subsets of the same space with a path between them (joint with David Millman). Then we assemble all simplices respecting a stratification of a metric space into a higher dimensional analogue of the fundamental group to describe a constructible sheaf structure.

0.1 Background

M is a metric space with a metric d_{M}.
SC is the set of (abstract, finite) simplicial complexes, $[\mathrm{SC}]:=\mathrm{SC} / \cong$.

$$
\operatorname{Conf}_{n}(M):=\{P \subseteq M:|P|=n\} \quad \operatorname{Ran}(M):=\{P \subseteq M: 0<|P|<\infty\}
$$

Distance on these spaces is Hausdorff distance d_{H}, and topology on them is the metric topology induced by d_{H}.

$$
d_{H}(P, Q):=\max \left\{r: Q \subseteq \bigcup_{p \in P} B(p, r), P \subseteq \bigcup_{q \in Q} B(q, r)\right\}
$$

Equivalent to the the coarsest topology for which, given any collection $\left\{U_{i} \subseteq M\right\}_{i}$ of pairwise disjoint open sets,

$$
\left\{P \in \operatorname{Ran}(M): P \subseteq \bigcup_{i} U_{i}, P \cap U_{i} \neq \emptyset \forall i\right\} \subseteq \operatorname{Ran}(M)
$$

is open. Consider $\check{C}: \operatorname{Ran}(M) \times \mathbf{R}_{\geqslant 0} \rightarrow[\mathrm{SC}]$ where $\check{C}(P, r)$ is the (isomorphism class of the) simplicial complex on P built by the Čech construction at radius r. Decompose domain by \check{C} or $V R=f l a g \circ \check{C}$.

0.2 Paths (1-simplices)

Joint with David Millman.
Take a path $\gamma:[0,1] \rightarrow \operatorname{Ran}(M)$ and consider the 2-dimensional space $\operatorname{im}(\gamma) \times \mathbf{R}_{\geqslant 0} \subseteq \operatorname{Ran}(M) \times \mathbf{R}_{\geqslant 0}$.

Assume:

1. γ is linear, so $\gamma(t)=P(1-t)+Q t$
2. No points split / merge along γ, so $\gamma(t) \in \operatorname{Conf}_{n}\left(\mathbf{R}^{N}\right)$ for all t

visualization

Suppose we have computed 0-barcode of $P=\gamma(0)$ with the distance filtration.
Does knowing γ help us compute 0 -barcode of $Q=\gamma(1)$ faster?
Q1: What is "faster"? The computational complexity of computing a barcode is cubic in the number of simplices, for 0 -barcode we have $n+n(n-1) / 2=\left(n^{2}+n\right) / 2$ simplices, so the complexity is: $\mathcal{O}\left(n^{6}\right)$

The distance functions are quadratic, there are $n(n-1) / 2$ pairwise distance functions, and so at most

$$
\sum_{i=1}^{n(n-1) / 2-1} 2 i=\left(n^{4}-2 n^{3}-n^{2}+2 n\right) / 4=\mathcal{O}\left(n^{4}\right)
$$

intersections among them.
Q2: What makes a linear path special? Observe:

1. Between these $\approx n^{4}$ intersections, persistence modules are isomorphic.
2. Around these intersections, only a small part changes.

Q3: How can this be harnessed? Complexity of swapping pair of simplices is at most linear in the number of simplices (Morozov), so $\mathcal{O}\left(n^{2}\right)$. Use Obs.2. to make it constant, because swap is "simple".

0.3 Higher simplices

Define a partial order on [SC].
Map \check{C} is continuous, have stratification.
Category of exit and entrance paths.
classic bundle fibration example, we want to get a new fibration. How?
simplicial sets
sheaves

