Higher structures for topological data analysis

Jānis Lazovskis

Maths Club 2020-02-26

Abstract: "Higher" is meant in an algebraic way - instead of spaces, use maps into spaces; instead of maps, use sequences of maps. I will describe a partial order on simplicial complexes motivated by persistent homology, and use it as a gateway to simplicial sets. This allows for a consistent description of persistent homology as its underlying data changes.

0.1 PH / TDA

Concepts 1:

- finite metric space (P, d)
- topological space $(X, \{U_i\})$
 - simplicial complex: pair (V, S), where V is a set and $S \subseteq P(V)$ is closed under subsets
 - simplicial map: $f: C \to D$ is two maps $f_V: V_C \to V_D$ and $f_S: S_C \to S_D$, with $f_S(\sigma) = \{f_V(v) : v \in \sigma\}$
 - * *Example:* sc, simp map, non simp map
- group G
 - homology

Example: points in \mathbb{R}^2 , distance among them \rightarrow simplicial complex at different radii (filtr) \rightarrow d-homology groups

Motivation: How does homology change as the finite metric space changes?

0.2 Partial orders

Def: A poset is a pair (A, \ge) , where A is a set and \ge is a reflexive, antisymmetric, transitive relation on A. A relation on A is a map $\ge: A \times A \to \{0, 1\}$.

Let SC be the set of simplicial complexes, and $[SC] := SC/\cong$ their isomorphism classes. Let \geq be the following relation on SC:

$$C \ge D \quad \iff \quad \left(\begin{array}{c} \text{there exists a simplicial map } C \to D \\ \text{that is surjective on vertices} \end{array} \right)$$

Example of partial order.

Motivation: Topological changes can be tracked when points merge, not split.

Lemma: This is a partial order on [SC].

Remark: Every poset (A, \ge) has a topology, with a basis of open sets $U_a = \{b \in A : b \ge a\}$. This is the *Alexandrov*, or *upset* topology.

0.3 Stratifications

Fix $n, N \in \mathbf{N}$.

Def: The configuration space of n points in \mathbf{R}^N is $\operatorname{Conf}_n(\mathbf{R}^N) = \{P \subseteq \mathbf{R}^n : |P| = n\}.$

This is a topological space with the Hausdorff metric

$$d_H(P,q) = \max\left\{\min_r \left\{ Q \subseteq \bigcup_{p \in P} B(p,r) \right\}, \min_r \left\{ P \subseteq \bigcup_{q \in Q} B(q,r) \right\} \right\}$$

Example of distance.

This is our topological space of all finite metric spaces. Note that $\dim(\operatorname{Conf}_n(\mathbf{R}^N)) = nN$.

Def: Let VR: $\operatorname{Conf}_n(\mathbf{R}^N) \times \mathbf{R}_{\geq 0} \to \mathsf{SC}$ be given by $(P, r) \mapsto (P, \{\sigma : d(u, v) \leq r \forall u, v \in \sigma\})$. The *Vietoris-Rips* map. Also can do the *Čech* map. **Thm:** The map [VR]: $\operatorname{Conf}_n(\mathbf{R}^N) \to ([\mathsf{SC}], \geq)$ is continuous.

Def: A continuus map $f: X \to (A, \ge)$ from a topological space to a poset is a *stratification*. The preimages $X_a := \{x \in X : f(x) = a\}$ are *strata*.

We are interested in nice stratifications.

Example: Strata of 2-d slice. Draw simplicial maps. Not nice. How to simplify?

Back to poset - one simplicial complex in each stratum.

0.4 Simplicial sets

Def: A category contains objects and morphisms between the objects, satisfying:

- if X is an object, there is a morphism $\mathbf{1}\colon X\to X$
- if $f \colon X \to Y$ and $g \colon Y \to Z$ are morphisms, then there is a morphism $g \circ f \colon X \to Z$

Def: Let Δ be the category whose objects are finite ordered sets [n] = (0, 1, ..., n) and whose morphisms are monotonic (order-preserving) maps $[m] \rightarrow [n]$.

Remark: Every morphism in Δ is a composition of *coface maps* $s_i : [n] \to [n-1]$, which hit *i* twice, and *codegeneracy maps* $d_i : [n] \to [n+1]$, which skip *i*. This composition is not necessarily unique.

Example: Observe that the morphism $[2] \rightarrow [3]$ given by

can be decomposed into any one of the compositions

Def: A simplicial set is a contravariant functor $\Delta \to \text{Set}$. **Example:** The *nerve* of a category \mathcal{C} , denoted $N(\mathcal{C})$, is a simplicial set with:

- $[0] \mapsto \operatorname{Obj}(\mathcal{C})$
- $[1] \mapsto \operatorname{Mor}(\mathcal{C})$
- $[n] \mapsto (\text{sequences of } n \text{ composable morphisms})$

The face map $N(s_i)$ goes from (n-1)-seq to n-seq. Inserts **1** at *i*th obj: $\dots \to X_i \xrightarrow{\mathbf{1}} X_i \to \dots$. The degeneracy map $N(d_i)$ goes from (n+1)-seq to n-seq. Composes maps around *i*th obj: $\dots \to X_{i-1} \xrightarrow{g \circ f} X_{i+1} \to \dots$.

We are interested in the simplicial set N([SC]). Implications:

- PH is equivalently:
 - a subsimplicial set of N([SC]), with $0 \mapsto \{\text{simplicial complexes in filtr}\}$ and $1 \mapsto \{\text{inclusions among them}\}$
 - an *n*-chain, or an *n*-simplex (element of $N([SC])_n$) in N([SC])
- Path in $\operatorname{Conf}_n(\mathbf{R}^N)$ is "roofs" among *n*-chains:

