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Overview

Based on [CCF+] “Moduli spaces of Morse functions for persistence”, JACT 2020.

Motivation.

I What do functions that have the same barcode have in common?

I Does the decomposition of Morse–Smale functions help?

← Edelsbrunner, Harer, Zomorodian:
“Hierarchical Morse Complexes for
Piecewise Linear 2-manifolds,” SoCG
2001.

CCF+, 2020. →

Plan.

1. Deep dive into invariants on S2

2. Compare MS functions by their quadrangle decomposition

3. Compare embeddings of S2 in R3 by their level sets
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Background 1: Decomposing functions

For (M, gM ) a nice manifold, let f : M → R be smooth.

I f is (excellent) Morse if all critical points are (distinct) non-degenerate.

I f is Morse–Smale if it is Morse and the gradient ∇f generates transverally
intersecting manifolds, the intersections of which are cells.

manifold M image f (M) stable and

unstable manifolds

max max saddle min

=

Morse–Smale graph

→ → →

For M 2-dimensional, the faces of this graph always have 4 edges and critical values
around the faces always follow a certain order (Edelsbrunner–Harer–Zomorodian 2001).

Approach: Play with the combinatorics of the Morse–Smale graph for M = S2.
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Background 2: Equivalences of Morse(–Smale) functions

Let f , g : M → R be Morse with slicings f0 < · · · < fn and g0 < · · · < gm, respectively.
In order of increasing coarseness, f and g are:

I geometrically equivalent if there exist orientation-preserving diffeos r : M → M,
` : R→ R such that ` ◦ f = g ◦ r ;

I topologically equivalent if n = m and f −1(−∞, fi ] is diffeomorphic to
g−1(−∞, gi ] for all i , via orientation-preserving diffeos;

I homologically equivalent if n = m and f −1(−∞, fi ] has the same Betti numbers
as g−1(−∞, gi ] for all i

Nicolaescu: On S2, Reeb graph isomorphism is geometric equivalence.

CCF+: On S2, graph equivalence is finer than geometric equivalence.

4 / 12



Enriching invariants

However, even graph equivalence does not capture everything.

I A Morse–Smale function S2 → R may have several embeddings in R3 that are
diffeomorphic, but are still heuristically “different”:

R

1

2

3

4

im(ι1) im(ι2)

S2 ι1,ι2−−−−→ π−−−→

1

3 2 4

I Factor f as f : S2
ι1,2−−→ R3 π−→ R, for ι1, ι2 smooth embeddings and π : R3 → R

the projection onto a fixed axis.

I Consider the preimage ι(f −1(z)) as nested circles, for z a regular value.

The compositions S2 ι1−→ R3 π−→ R and S2 ι2−→ R3 π−→ R are:

I height equivalent if ι2 = ι1 ◦ ϕ for some level-set preserving homeo ϕ : R3 → R3;

I poset equivalent if they are height equivalent and ϕ induces an isomorphism of
nesting posets on all level sets.
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Generating all functions on S2

Cerf : Any two Morse functions on M are connected by a path in the space of all
smooth functions on M, with finitely many non-Morse points along this path.

CCF+: For M = S2, every such path can be considered as a sequence of one of three
types of local changes to the Morse–Smale graph.

↔

face (-max) move

↔

edge (-max) move

↔

vertex (-max) move

I Adding critical points must occur in pairs of adjacent indices (Euler char).

I Saddle can appear in face, on edge, or at existing vertex.

I Saddles always have degree 4. Faces always have same sequence of vertex types.

I Connections of new saddle determine type of move (vertex move in general).
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Face, vertex, edge moves

Each move adds / removes a branch from the Reeb graph of f . Known as “elementary
deformations” of the Reeb graph (Di Fabio–Landi 2016).

↔

Face-max, edge-max

↔

Face-min, edge-min

↔

Vertex-max

↔

Vertex-min

Playground for space of all Morse–Smale functions: github.com/zhou325/VIS-MSVF

Youjia Zhou

University of Utah
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The nesting poset for level sets: S2 embedded in R3

For every z ∈ R, the preimage ι(f −1(z)) ⊆ π−1(z) = R2 is:

I a union of circles for z regular, and

I a union of circles and S1 ∨ S1 or ∗, for z critical.

Instead of an order on the circles in ι(f −1(z)), define an order on the connected
components of π−1(z)− ι(f −1(z)) =: Xz , that is, on π0(Xz ).

1. Label Jordan curves γ1, . . . , γn ∈ ι(f −1(z))

2. Set p0 ∈ π0(Xz ) to be unbounded component

3. Set pi ∈ π0(Xz ) to be the component whose “exterior” boundary is γi

Definition: For pi , pi ∈ π0(Xz ), let pi 6 pj whenever

I int(γi ) ⊆ int(γj ), or

I R2 \ int(γj ) is unbounded.

This is a partial order on π0(Xz ), so we call (π0(Xz ),6) the nesting poset.
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Relations among nesting posets

Motivation: How is the natural poset structure for z, z ′ related?

Intuition: Use topology to motivate maps between posets.

Clear for regular values and max/min, but ambiguous for saddles:

Xc−ε

Xz

Xz+ε

Xz−ε

Xz

Xz+ε

Resolution: Consider the larger picture at saddles.
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Saddle points: Nesting / non-nesting, merging/ splitting

CCF+: Canonical choices can be always be made based on the type of saddle.

non-nesting saddle

A

B C

A

B

C

A′

B′ C ′

A′

B′

C ′

A′′

B′′

B′′ A′′

A 7→A′

B 7→B′

C 7→C ′

A′ 7→ A′′

B′ 7→ B′′

C ′ 7→ B′′

∼=

nesting saddle

B

A C

ABC

B′

A′ C ′

A′B′C ′

B′′

A′′

B′′ A′′

A 7→A′

B 7→B′

C 7→C ′

A′ 7→A′′

B′ 7→B′′

∼=
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Extensions

I Enriched barcode: We showed the barcode is a zigzag of posets. This can be
generalized to a zigzag of algebras (the algebra of intervals of a poset)

I Counting preimages of a barcode: Every open end in a barcode / fork in a Reeb
graph is a choice of nesting or non-nesting saddle.

ι1

1st bar: one

embedding

2nd bar: two

embeddings

ι11 ι12

3rd bar: four

embeddings from ι11

ι111 ι112 ι113 ι114

3rd bar: four

embeddings from ι12

ι121 ι122 ι123 ι124

I Are some choices forced / double counted by (non-)nested pairs of bars?
I What happens when there is more than one maximum?

I Setting change: Heavy use was made of the nice properties of S2.
I How does our analysis work for surfaces with different Euler characteristic?
I Non-orientable surfaces, other orientable manifolds?
I Can 2-dim manfiolds be nested in preimages on M 3-dimensional?
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End

Thank you for your attention!
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I Di Fabio, Barbara and Claudia Landi. The Edit Distance for Reeb Graphs of Surfaces, 2016.

I Edelsbrunner, Herbert, John Harer, and Afra Zomorodian. Hierarchical Morse Complexes for Piecewise Linear 2-Manifolds, 2001.

I Nicolaescu, Liviu. Counting Morse functions on the 2-sphere, 2008.
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