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Overview

About.

I Based on work in preparation (2019-2021)

I In collaboration with the Blue Brain Project (EPFL)

I Funded by EPSRC grant “Topological Analysis of Neural Systems”

Goals.

I Neurological: Make a in silico model of a brain based on in vivo models.

I Mathematical: Distinguish neurological activity by its topological features.

Plan.

1. Neuroscience
I Structure of the network
I Experiments on the network

2. Mathematics
I Topology in neuroscience
I Neighborhoods in a digraph

3. Implementation and results
I Classification by machine learning
I Computational requirements
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Neuroscience: Structure

Microcircuit of a rat neocortical column, average over 6 instances:

neuroscience mathematics
31 346 neurons vertices

7 803 528 synapses directed edges

This graph is:

I Biologically modeled (”grown”)

I Very sparse (0.8% density)

I Physically small (0.29mm3 of brain)

I Relatively small (newest version has
4.2 million neurons and 4.8 billion
synapses)

I Open source (available at
bbp.epfl.ch/nmc-portal)

I Not a random graph (more
topological features)
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Neuroscience: Structure

The complexity of a network can be considered via the number of cliques.

undirected 3-clique directed unordered

4-clique

directed ordered

5-clique

Large cliques unlikely, and among those
unordered cliques dominate. On n vertices:

I 3n(n−1)/2 possible configurations

I 2n(n−1)/2 possible configurations as
directed n-cliques

I n! possible configurations as directed
ordered n-cliques
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Neuroscience: Experiments

Activity.

I Each neuron has an electric potential and a threhsold.

I If the potential passes the threshold, the neuron fires and sends its potential
along outgoing synapses.

I Each synapse has a probability of signal transmission.

I Modern models encode plasticity, or the change in future transmission probability
based on past transmission.

incoming
signal

neuron 1 fires signal
transmission

neurons 2
and 3 fire

signal
transmission

neurons 4
and 1 fire

outgoing
signal

Experiments.

I External input is connected by thalamic fibers to receptory neurons.

I Different stimuli are sent to the brain (flick of a whisker)

I The propogation of activity is recorded over 250ms after the input of the signal

I 8 stimuli, 557 repetitions of each

I Data recorded as a list of values (ni , ti ) of the neuron index and the time it fires
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Mathematics: Topology

I The topology of a space X is reflected by
classes of maps Sn → X .

I The more (homotopy) classes in Cn, the
more complex the space.

I The flag complex of a directed graph
comes from associating to every directed
n-clique an (n − 1)-dimensional simplex.

homology groups: Hn(X ) = ker(Cn → Cn−1)/im(Cn+1 → Cn)

Betti numbers: βn(X ) = |Hn(X )|
Euler characteristic: χ(X ) = β0 − β1 + β2 − β3 + · · ·

normalized Betti coefficient: B(X ) =
β0(X )

# of vertices
+

2β1(X )

# of edges
+ · · ·
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Mathematics: Neighborhoods in a digraph

Neuroscience uses the firing rate of a neuron or region for classification.
We use different parameters based on graph neighborhoods.

I Fundamental: firing rate, in degree, out degree, recioprocal connection count

I Algebraic: clustering coefficient

I Topological: Euler characteristic, Betti coefficient, density coefficient

I Spectral: adjacency, Laplacian, transition probability

structural active subgraph

on [t0, t1]

active subgraph

on [t1, t2]

In total 30 different parameters.
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Implementation: Technical requirements

Neuroscience: EPFL

I Circuit built and experiments run on EPFL Blue
Brain Project supercomputers

I 42k cores, 94TB of RAM

I Takes about 10 hours to simulate 250ms

Mathematics: University of Aberdeen

I Analysis run on UoA Maxwell HPC

I 1.2k cores, 12TB of RAM
I Takes about 2 hours to featurize each parameter, 1

minute to classify
I Requests 40 cores, 150GB of RAM
I Topological computations in parallel
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End

Thank you for your attention!
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