RIGA BUSINESS SCHOOL Riga Technical University

Dynamics of neural circuits at different scales

Oxford Applied Topology Seminar

Jānis Lazovskis / November 4, 2022

Slides online at jlazovskis.com/talks

Teamwork

University of Aberdeen, Neuro-Topology group

- Ran Levi
- Jason Smith
- Henri Riihimäki
- Dejan Govc
- Pedro Rodrigues da Conceição,
- Dejan Govc,

• ...

Personal history

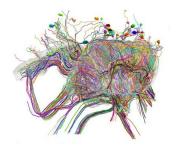
- 2014 2019: University of Illinois at Chicago
- 2019 2020: University of Aberdeen
- 2020 : RTU Riga Business School

EPFL, Blue Brain Project

- Kathryn Hess
- Daniela Egas Santander
- Michael Reimann
- Matteo Santoro
- Andras Ecker
- Vishal Sood
- Sirio Bolanos-Pouchet
- Nicolas Ninin
- ...

Connectomes

- White et al 1986 / Watts and Strogatz 1998
 - C.Elegans (279 neurons, 2.2k connections)
- Blue Brain Project 2015 (rat-ified mouse)
 - V5 (31k neurons, 7.8m connections)
 - SSCx (4.2m neurons, 2.5b connections)
- Janelia 2020
 - Drosophila (25k neurons, 3.7m connections)
- Max Planck 2020
 - Zebrafish (3.6k neurons)
- Sayre et al 2021
 - Bumblebee (1.3k neurons)



Blue Brain V5 connectome

Layer structure

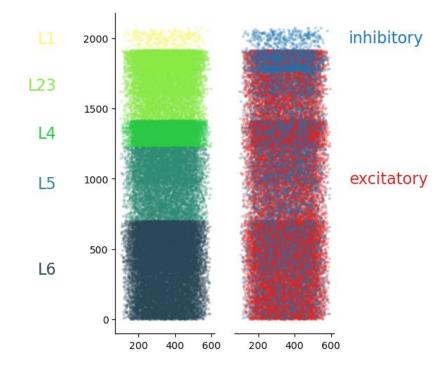
- Higher (L1) = inhibition
- Lower (L6) = information processing

Neuron characteristics

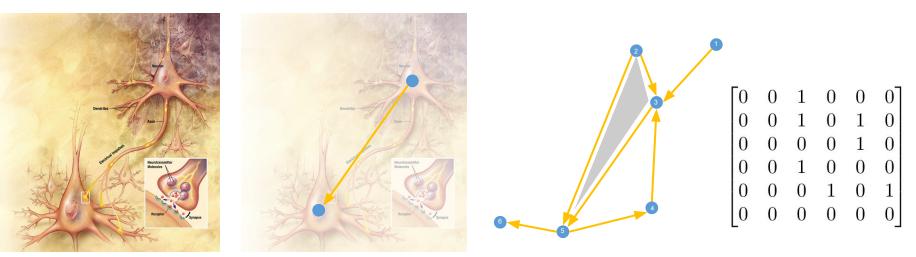
- 31346 in total
- 55 electro-morphological classes

Other facts

- Diameter is 4
- High dimensional simplices are over-represented (*Cliques of neurons, 2017*)
- Reciprocal connections preferentially appear in high-dimensional simplices (*Studying motifs*, 2021)



Interpreting neurons



National Institutes of Health, nih.gov

biological data

record connection existence and direction

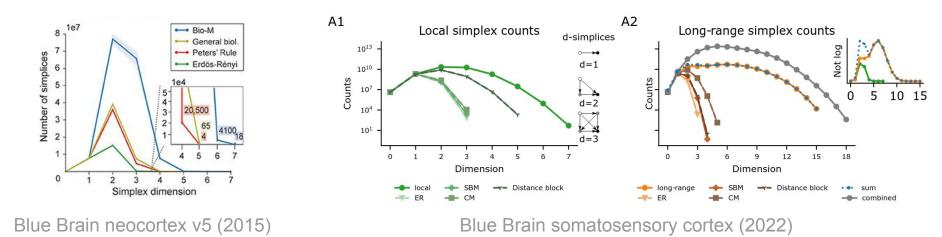
directed clique complex

adjacency matrix

Ignore properties of:

- soma (cell body)
- axons (physical connection)
- dendrites (attachments per axon)
- synapses (types of attachments)

Topological botany

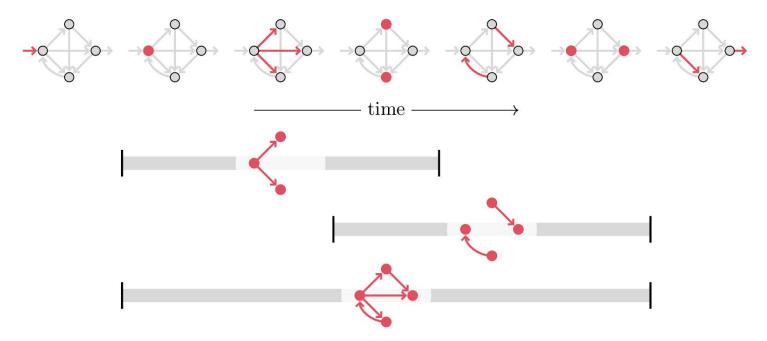


The Blue Brain circuits are *in-silico reconstructions*.

Extracting graphs from other conectomes is difficult because:

- "Connection" is indirectly given by proximity of synapses
- Synapses do not necessarily pass electricity through the soma \rightarrow vertex becomes a simplex
- Some cells switch inhibitory and excitatory roles
- Sometimes axons are inhibitory / excitatory, instead of soma

Interpreting neuron dynamics



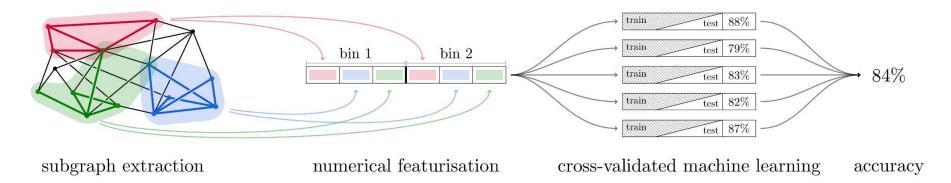
Neurons build up voltage from in-neighbour transmissions

• Once threshold passed, the neuron *fires*, (probabilistically) transmitting to its out-neighbours

An edge is *active* in a given time interval if its tail and head both fire

• The binary dynamics of vertices gives a notion of active subgraphs

Classifying signals: "the pipeline"



1. Structure:

- a. Compute graph / topological parameter for every neighbourhood
- b. Select neighbourhoods with top N parameter P_1 values

2. Function:

- a. For each selected neighbourhood, identify its active subgraph over *B* time bins
- b. For each active subgraph in each time bin, compute its parameter P_2 value

3. Classification:

- a. Construct a feature vector of length $N \cdot B$ for each of (8 signals) \cdot (557 repetitions) observations
- b. Classify with support vector machines (SVM) with 60/40 train/test five different ways

Parameters: from graph theory

- An Antonia Martin

Let *v* be a vertex with *n* neighbours and adjacency matrix $A \in M_{(n+1)\times(n+1)}(\{0,1\})$.

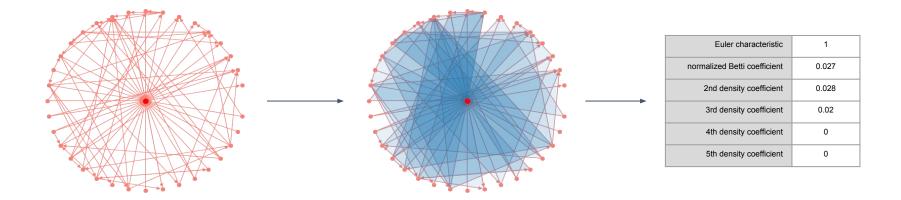
clustering coefficient	transitive clustering coefficient	neighbourhood size	number of reciprocal connections	adjacency spectrum	Laplacian spectrum (Chung)	Laplacian spectrum (Bauer)	transition probability spectrum
Fagiolo (2007) generalizing Watts–Strogatz (1998) to digraphs	ratio of all 3-cliques at <i>v</i> to all possible 3-cliques at <i>v</i>	size of closed neighbourhood	add 1 if <i>u→v</i> and <i>v→u</i> both exist	eigenvalues of adjacency matrix	of largest strongly connected component	extension to not necessarily strongly connected graph	eigenvalues of transition probability matrix

2000 -	人物:"新闻的地方。"		
		clustering coefficient	0.043
1500 -		transitive clustering coefficient	0.051
1500		neighbourhood size	36
1000 -		number of reciprocal connections	1
1000		adjacency spectral gap	1
500 -		Chung Laplacian spectral gap	0.5
500		Bauer Laplacian spectral gap	0.316
0 -		transition probability spectral gap	0.707
1			
	200 400 600		

Parameters: from topology

Topologically significant features indicate neurologically significant activity (Cliques of neurons, 2017)

Euler characteristic	normalized Betti coefficient	density coefficient	
alternating sum of Betti numbers	weighted sum of Betti numbers, weighted by dimension <i>d</i> and number of <i>d</i> -simplices	ratio of <i>(d+1)</i> -cliques to <i>d</i> -cliques, normalised to be 1 on complete graphs	



Flagser (based on Ripser) and its variants flagser-contain, pyflagser provide efficient computation

Classifying signals: results



Classification accuracy of ~88% when:

- selecting by a spectral parameter
- featurising by neighbourhood size
- Complications:

100

80

60

40

20

 Active neighbourhood size is a measure of firing rate

Selection parameter

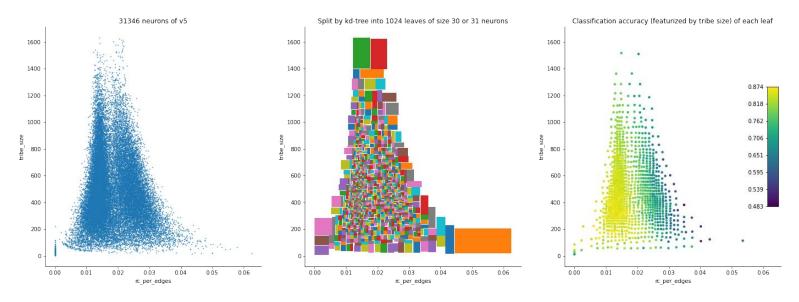
Improving classification

Double selection: Get top 50 neighbourhoods by one parameter, from those select top 25 by another

• No global improvement: Lower than or same as previous best results

Double sorting: Split all neurons into groups of ~50 with a kd-tree, feed each group into pipeline

No global improvement: Lower than or same as previous best results

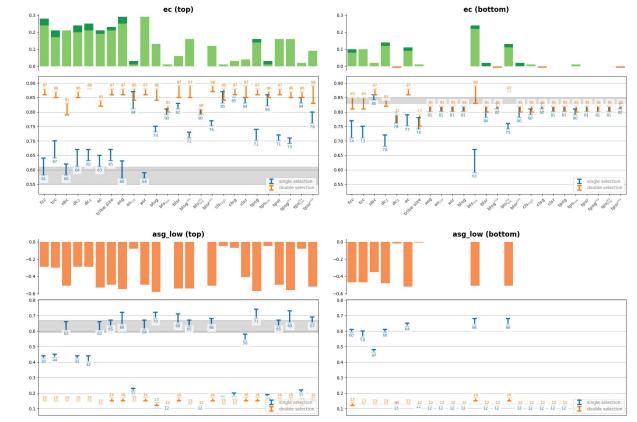


Observation: Considering reciprocal connections introduces two classification regimes

RC regimes: Select by P_1 and number of reciprocal connections

Classification accuracy **increases** for all choices of P₁

Classification accuracy **decreases** for all choices of P₁

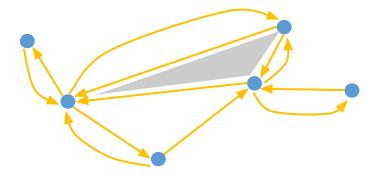


Observation: When accuracy decreases, feature vectors are almost all zero \rightarrow trivial neighbourhoods

The case for reciprocal connection density

Small neighbourhoods with no RC's ≈ bad for classification Relatively small neighbourhoods with relatively few RC's ≈ good for classification

> Adding backward edges rapidly increases topological structure:



Reciprocal connections in a neighbourhood are:

- bad because: they amplify the effect of firing rate (if active, is very active)
- good because: ensure classification accuracy comes from functional characteristics

ightarrow RC count seems to be a proxy for some notion of density / sparsity \leftarrow

Finding a balance

Reliability: Consistent local activity for global input

- High classification accuracy does not imply neighbourhood is reliable
- High classification accuracy + Low reliability suggests non-functional properties affect classification

Measured using Gaussian kernel reliability

- Computed among all pairs of experiment repetition spike trains
- Best would be high reliability and high classification accuracy

Further ideas

Consider maximal simplices instead

- Far fewer than all simplices
- Highest neurological complexity

In neuronal networks:

- \rightarrow Topologically significant features are also neurologically significant
- \rightarrow Local activity classifies global signals
- \rightarrow Reciprocal connections decrease classification accuracy, but increase reliability

Pedro Conceição, Dejan Govc, Jānis Lazovskis, Ran Levi, Henri Riihimäki, Jason P. Smith; *An application of neighbourhoods in digraphs to the classification of binary dynamics*. Network Neuroscience 2022; 6 (2): 528–551. doi: <u>https://doi.org/10.1162/netn_a_00228</u>

Reimann MW, Riihimäki H, Smith JP, Lazovskis J, Pokorny C, et al. (2022) *Topology of synaptic connectivity constrains neuronal stimulus representation, predicting two complementary coding strategies*. PLOS ONE 17(1): e0261702. <u>https://doi.org/10.1371/journal.pone.0261702</u>

Reimann MW, Nolte M, Scolamiero M, Turner K, Perin R, Chindemi G, Dłotko P, Levi R, Hess K and Markram H (2017) *Cliques of Neurons Bound into Cavities Provide a Missing Link between Structure and Function*. Front. Comput. Neurosci. 11:48. doi: <u>https://doi.org/10.3389/fncom.2017.00048</u>

Lütgehetmann D, Govc D, Smith JP, Levi R. *Computing Persistent Homology of Directed Flag Complexes*. Algorithms. 2020; 13(1):19. https://doi.org/10.3390/a13010019

Santoro, Matteo (2021) Studying motifs in connectome models. Master project, Brain-Mind Institute, EPFL.

Markram H et al. Reconstruction and Simulation of Neocortical Microcircuitry. Cell. 2015 Oct 8;163(2):456-92. doi: 10.1016/j.cell.2015.09.029. PMID: 26451489.

Riemann MW et al. (2022) Modeling and Simulation of Rat Non-Barrel Somatosensory Cortex. Part I: Modeling Anatomy. bioRxiv 2022.08.11.503144; doi: https://doi.org/10.1101/2022.08.11.503144

Thank you!

