The mathematics and computer science in BITL

Why is mathematics important in IT? What technical skills will I learn in BITL?
January 16, 2023

- 2009-2014: University of Waterloo, Canada
- 2014-2019: University of Illinois at Chicago, USA
- 2019-2020: University of Aberdeen, UK
- 2020-: RTU Riga Business School, Latvia

UNIVERSITY OF WATERLOO
 ABERDEEN

1495

Riga Business School
Riga Technical University

EPFL

Blue Brain Project

1. Why is math important for IT?

2. What will I learn in BITL?

What is IT?

Information technology:

- How to work with information
- How large amounts of information are created, stored, processed, analyzed

Operations management:

- Managing information
- Managing people

In the context of RBS:

- Synonymous with big data \& data analysis
- BITL is not a program to create Sys Admins or Dev Ops (though you may work in such roles)

slido

:二

Which statements describe you? You may choose more than one.

Math is important for everyone

- Many students have a bad experience with mathematics teachers in high school / elementary school
- There is no such thing as "natural-born" ability to be "good at math"
- Practicing math (not being good at math!) improves analytical skills

Information technology seems complicated

- Used as a tool by people in power to push their changes on unsuspecting people (e.g. Facebook)
- Misused by people why interpret it to mean what they want, not what it is (e.g. politicians)
- Reinforces the beliefs of those who created it, requires deep knowledge to change

Mathematics is the science of finding the essence in a confusing situation and creating order

Practical applications*

- The simplex method in optimization: create a geometric figure from constraints, move along the boundary to find the best solutions to the constraints
- Machine learning in medical imaging: interpret visual patterns as mathematical definitions, train a computer to find them more reliably / accurately than a human
- Creating financial forecasting models: analyze huge amounts of data, compress to a single number that the customer can understand
- Perfecting communications networks: detect network strengths at a distance, modify the signals (without affecting the transmission) to adapt to dynamic changes
* These may seem simple, unrelated, contrived, not really math

Traffic modifications

- Roads and intersections provided by Rīgas Dome
- Observed and predicted traffic flow
- Solve:
- How does flow change, if roads closed?
- Where should a new crosswalk be created to give the greatest benefit to pedestrian flow?

RBS

Researching artificial networks

- 6 million nodes, 40 billion connections
- Replicates $\sim 1 \mathrm{~mm}^{2}$ of a mammal's brain
- 10 seconds of "real time" takes ~24 hours of real time
- Simple basis: binary communication of neurons
- Knowing the effect, what was the cause?

RBS

BITL courses

Mathematics:

- Mathematics 1 \& 2 (= College Calculus)
- Discrete Structures (= Combinatorics)
- Linear Algebra
- Statistics

Computer Science:

- Computer Science 1 \& 2
- Programming Languages
- Computer Organization
- Algorithm Analysis \& Design

slido

Mathematics 1 \& 2: What is going on here? What is the relationship among the functions? Which function is "first"?

(i) Start presenting to display the poll results on this slide.

	1	2	3	4	5
1	F	T	F	F	T
2	T	F	F	T	F
3	F	F	T	F	F
4	F	T	F	F	T
5	T	F	F	T	F

slido

Discrete Structures: What is going on here? What is the relationship among the three visuals? What could it represent?
(i) Start presenting to display the poll results on this slide.

Linear Algebra: What is going on here? Which pictures are similar? How are they similar, how are they different?

Math \& IT

A relationship forged at the foundations

- A good base gives good results
- The result may not be obvious, but the process needs to be clear

Delivered professionally

- Modern, forward-thinking, relevant
- Adaptive, progressive

Relevant links:

- The myth of "l'm bad at math", The Atlantic (link)
- Understanding Facebook's EdgeRank, Buffer blog (link)
- Racial discrimination in face-detecting technology, Harvard University (link)
- Financial mathematics: Jim Simons
- Medical mathematics: Gunnar Carlsson
- BlueBrain Project, Ecole Polytechnique Federale de Lausanne (link)
- RBS Introduction to Linear Algebra, JL (link)

