Continuous and discrete dynamic topology

Jānis Lazovskis Riga Technical University Riga Business School

February 22, 2023 TU Graz Institute of Geometry

Discrete dynamics in topology

How can topology help local binary dynamics classify global dynamics?

University of Aberdeen, Neuro-Topology group

- Ran Levi
- Jason Smith
- Henri Riihimäki
- Dejan Govc
- Pedro Rodrigues da Conceição
- Dejan Govc

EPFL, Blue Brain Project

- Kathryn Hess
- Daniela Egas Santander
- Michael Reimann
- Matteo Santoro
- Andras Ecker
- Vishal Sood
- Sirio Bolanos-Pouchet
- Nicolas Ninin
- ...

Structure

BlueBrain V5 connectome

Layer structure

- Higher (L1) = inhibition
- Lower (L6) = information processing

Neuron characteristics

- 31346 in total
- 55 electro-morphological classes

Other facts

- Diameter is 4
- High dimensional simplices are over-represented
- Reciprocal connections preferentially appear in high-dimensional simplices

Activity

Stimulated activity

Reconstruction is stimulated from an "at rest" state.

Transmission is probabilistic, response can not be predicted

Every spike index and time is recorded

Riemann et al, 2022. Topology of synaptic connectivity constrains neuronal stimulus representation

Activity extraction

Extracting features

1. Consider two "active subgraphs" of the full graph for each repetition

2. Consider two "active neighbourhoods" of *N* vertices in the active subgraph

3. Assign a numerical value to every active neighbourhood

Parameters

Used to:

- select *N=50* neighbourhoods
- assign numerical values to active neighbourhoods

Fagiolo (2007) generalizing Watts–Strogatz (1998) to digraphs	0.043
ratio of all 3-cliques at v to all possible 3-cliques at v	0.051
size of closed neighbourhood	36
add 1 if $u \rightarrow v$ and $v \rightarrow u$ both exist	1
eigenvalues of adjacency matrix	1
of largest strongly connected component	0.5
eigenvalues of transition probability matrix	0.707
alternating sum of Betti numbers	1
weighted sum of Betti numbers, weighted by dimension d and number of d-simplices	0.027
ratio of (d+1)-cliques to d-cliques, normalised to be 1 on complete graphs	{0.028, 0.02, 0, 0}
	Watts-Strogatz (1998) to digraphsratio of all 3-cliques at v to all possible 3-cliques at vsize of closed neighbourhoodadd 1 if $u \rightarrow v$ and $v \rightarrow u$ both existeigenvalues of adjacency matrixof largest strongly connected componenteigenvalues of transition probability matrixalternating sum of Betti numbers, weighted by dimension d and number of d-simplicesratio of $(d+1)$ -cliques to d-cliques, normalised to be 1 on

1. Select neighbourhoods:

Compute graph / topological parameters for all neighbourhoods, select top N=50 by parameter P_{1} value

2. Measure active neighbourhoods:

For each selected neighbourhood, compute parameter P_2 value on each of B=2 active subgraphs

3. Classify with measurements as feature vectors

Length of feature vector is $N \cdot B$, number of feature vectors is (8 signals) · (557 repetitions) Classify with support vector machines (SVM) with 60/40 train/test five different ways

4. Validate with baseline results

Random measurements, random neighbourhood choices, random ambient graph

Results and extensions

Classification accuracy of ~88% when:

- selecting by a **spectral** parameter
- featurising by neighbourhood size

Observations:

- Active neighbourhood size is firing rate
- Euler characteristic is a good classifier
- Density coefficients not useful

Development:

- github repo for easy parameter measurement
- Double selection for better results

Continuous dynamics in topology

How can spatial change be quantified as topological change?

Assumptions:

- Euclidean space
- Linear paths
- Unique locations
- Times with pairwise equal distance are measure zero

Barbara Giunti, *TU Graz* David Millman, *Montana State University*

Zigzags of simplicial maps

Movement as algebra

- Fix a radius
- Every pair of points defines a quadratic distance function

Entering a parabola (left): - adds an edge

Exiting a parabola (right): - removes an edge

Motivation

Recover later homology from earlier homology, without recomputing everything

The (un)reduced boundary matrix

The matrix *B* has one row for each simplex, arranged in increasing dimension and increasing entrance time:

The reduction algorithm

Add earlier columns (in modulo 2) to later columns to ensure one pivot per row:

Gives a decomposition R = BU

- *B* is the (unreduced) boundary matrix
- *U* is an upper triangular matrix recording the column operations
- *R* is the reduced boundary matrix

Approach: Add / remove columns from *R*, use *U* to ensure removal keeps *R* reduced

Adding a new edge

Adding a single edge can may have different consequences for:

- number of n-simplices
- number of classes in H_n

Removing an existing edge

Removing a **positive** edge

- its column is 0
- pivots in *R* won't change if this column is removed

Remove

- Row and column of edge
- Rows and columns of all cofaces

Clear:

• *R* after is still reduced

Removing an existing edge

Removing a **negative** edge

- its column is not 0
- pivots in *R* may change if this column is removed

Remove

- Row and column of edge
- Rows and columns of all cofaces

Almost clear:

• *R* after is still reduced

Carlsson G, de Silva V (2010). Zigzag persistence. Foundations of Computational mathematics. 10, 367–405. doi: https://doi.org/10.1007/s10208-010-9066-0

Cohen-Steiner D, Edelsbrunner H, Morozov D (2006) *Vines and vineyards by updating persistence in linear time*. SCG 2006: Proceedings of the twenty-second annual symposium on Computational Geometry. doi: <u>https://doi.org/10.1145/1137856.1137877</u>

Edelsbrunner H, Harer J (2010). Computational Topology: An Introduction. American Mathematical Society.

Lütgehetmann D, Govc D, Smith JP, Levi R (2020). *Computing Persistent Homology of Directed Flag Complexes*. Algorithms. 13(1):19. doi: https://doi.org/10.3390/a13010019

Markram H et al (2015). Reconstruction and Simulation of Neocortical Microcircuitry. Cell. Oct 8;163(2):456-92. doi: 10.1016/j.cell.2015.09.029. PMID: 26451489.

Reimann MW, Nolte M, Scolamiero M, Turner K, Perin R, Chindemi G, Dłotko P, Levi R, Hess K and Markram H (2017) *Cliques of Neurons Bound into Cavities Provide a Missing Link between Structure and Function*. Front. Comput. Neurosci. 11:48. doi: <u>https://doi.org/10.3389/fncom.2017.00048</u>

Reimann MW, Riihimäki H, Smith JP, Lazovskis J, Pokorny C, et al. (2022) *Topology of synaptic connectivity constrains neuronal stimulus representation, predicting two complementary coding strategies*. PLOS ONE 17(1): e0261702. <u>https://doi.org/10.1371/journal.pone.0261702</u>

Riemann MW et al. (2022) Modeling and Simulation of Rat Non-Barrel Somatosensory Cortex. Part I: Modeling Anatomy. bioRxiv 2022.08.11.503144; doi: https://doi.org/10.1101/2022.08.11.503144; doi: https://doi.org/10.1101/2022.08.11.503144; doi:

Santoro, Matteo (2021) Studying motifs in connectome models. Masters project, Brain-Mind Institute, EPFL.

Pedro Conceição, Dejan Govc, Jānis Lazovskis, Ran Levi, Henri Riihimäki, Jason P. Smith; *An application of neighbourhoods in digraphs to the classification of binary dynamics*. Network Neuroscience 2022; 6 (2): 528–551. doi: <u>https://doi.org/10.1162/netn_a_00228</u>

Santander DE et al (2023). General functions to analyze connectomes. <u>https://github.com/danielaegassan/connectome_analysis</u>