Continuous and discrete dynamic topology

Jānis Lazovskis
Riga Technical University
Riga Business School

February 22, 2023
TU Graz Institute of Geometry

Discrete dynamics in topology

ABERDEEN

University of Aberdeen, Neuro-Topology group

- Ran Levi
- Jason Smith
- Henri Riihimäki
- Dejan Govc
- Pedro Rodrigues da Conceição
- Dejan Govc

EPFL, Blue Brain Project

- Kathryn Hess
- Daniela Egas Santander
- Michael Reimann
- Matteo Santoro
- Andras Ecker
- Vishal Sood
- Sirio Bolanos-Pouchet
- Nicolas Ninin

Structure

BlueBrain V5 connectome

Layer structure

- \quad Higher (L1) $=$ inhibition
- Lower (L6) = information processing

Neuron characteristics

- 31346 in total
- 55 electro-morphological classes

Other facts

- Diameter is 4
- High dimensional simplices are over-represented
- Reciprocal connections preferentially appear in high-dimensional simplices

Activity

Stimulated activity

Reconstruction is stimulated from an "at rest" state.

Transmission is probabilistic, response can not be predicted

200 milliseconds

Activity extraction

Extracting features

1. Consider two "active subgraphs" of the full graph for each repetition
2. Consider two "active neighbourhoods" of N vertices in the active subgraph
3. Assign a numerical value to every active neighbourhood

Parameters

Used to:

- select $N=50$ neighbourhoods
- assign numerical values to active neighbourhoods

clustering coefficient	Fagiolo (2007) generalizing Watts-Strogatz (1998) to digraphs	0.043
transitive clustering coefficient	ratio of all 3-cliques at v to all possible 3-cliques at v	0.051
neighbourhood size	size of closed neighbourhood	36
number of reciprocal connections	add 1 if $u \rightarrow v$ and $v \rightarrow u$ both exist	1
adjacency spectral gap	eigenvalues of adjacency matrix	1
Chung Laplacian spectral gap	of largest strongly connected component	0.5
transition probability spectral gap	eigenvalues of transition probability matrix	0.707
Euler characteristic	alternating sum of Betti numbers	1
normalized Betti coefficient	weighted sum of Betti numbers, weighted by dimension d and number of d-simplices	0.027
density coefficients	ratio of ($d+1$)-cliques to d-cliques, normalised to be 1 on complete graphs	$\begin{gathered} \{0.028, \\ 0.02,0,0\} \end{gathered}$

Overview: the "pipeline"

1. Select neighbourhoods:

Compute graph / topological parameters for all neighbourhoods, select top $N=50$ by parameter P_{1} value
2. Measure active neighbourhoods:

For each selected neighbourhood, compute parameter P_{2} value on each of $B=2$ active subgraphs
3. Classify with measurements as feature vectors

Length of feature vector is $N \cdot B$, number of feature vectors is (8 signals)•(557 repetitions)
Classify with support vector machines (SVM) with 60/40 train/test five different ways
4. Validate with baseline results

Random measurements, random neighbourhood choices, random ambient graph

Results and extensions

Santander et al, 2023. github.com/danielaegassan/connectome_analysis

Classification accuracy of $\sim 88 \%$ when:

- selecting by a spectral parameter
- featurising by neighbourhood size

Observations:

- Active neighbourhood size is firing rate
- Euler characteristic is a good classifier
- Density coefficients not useful

Development:

- github repo for easy parameter measurement
- Double selection for better results

Continuous dynamics in topology

How can spatial change be quantified as topological change?

Assumptions:

- Euclidean space
- Linear paths
- Unique locations
- Times with pairwise equal distance are measure zero

Barbara Giunti, TU Graz

David Millman, Montana State University

Zigzags of simplicial maps

Movement as algebra

- Fix a radius
- Every pair of points defines a quadratic distance function

Entering a parabola (left): - adds an edge

Exiting a parabola (right): - removes an edge

Motivation

Recover later homology from earlier homology, without recomputing everything

The (un)reduced boundary matrix

The matrix B has one row for each simplex, arranged in increasing dimension and increasing entrance time:

$$
B_{i, j}= \begin{cases}1 & \text { simplex of row } i \text { is a face of simplex of column } j \\ 0 & \text { else }\end{cases}
$$

swap edges
\bullet and \bullet
swap edges
\bullet and \bullet

The reduction algorithm

Add earlier columns (in modulo 2) to later columns to ensure one pivot per row:

Gives a decomposition $R=B U$

- $\quad B$ is the (unreduced) boundary matrix
- U is an upper triangular matrix recording the column operations
- $\quad R$ is the reduced boundary matrix

Approach: Add / remove columns from R, use U to ensure removal keeps R reduced

Adding a new edge

Adding a single edge can may have different consequences for:

- number of n-simplices
- number of classes in H_{n}
$\left|K_{2}\right|$ increases by n
$\left|K_{3}\right|$ increases by $\binom{n}{2}$
$\left|K_{4}\right|$ increases by $\binom{n}{3}$

realized in \mathbf{R}^{3}
β_{1} increases by 1
β_{2} unchanged β_{3} unchanged
\vdots

realized in \mathbf{R}^{2}
β_{1} unchanged β_{2} increases by n β_{3} unchanged

realized in $\mathbf{R}^{n \geqslant 4}$
β_{1} unchanged β_{2} unchanged β_{3} increases by n
n copies of

identified at the equator
realized in $\mathbf{R}^{n \geqslant 5}$

Removing an existing edge

Removing a positive edge

- its column is 0
- pivots in R won't change if this column is removed

Remove

Case 1:

- Row and column of edge
- Rows and columns of all cofaces

Clear:

- $\quad R$ after is still reduced

R before

R before

R after

Removing an existing edge

Removing a negative edge

- its column is not 0
- pivots in R may change if this column is removed

Remove

- Row and column of edge
- Rows and columns of all cofaces

Almost clear:

- $\quad R$ after is still reduced

Carlsson G, de Silva V (2010). Zigzag persistence. Foundations of Computational mathematics. 10, 367-405. doi: https://doi.org/10.1007/s10208-010-9066-0
Cohen-Steiner D, Edelsbrunner H, Morozov D (2006) Vines and vineyards by updating persistence in linear time. SCG 2006: Proceedings of the twenty-second annual symposium on Computational Geometry. doi: https://doi.org/10.1145/1137856.1137877

Edelsbrunner H, Harer J (2010). Computational Topology: An Introduction. American Mathematical Society.
Lütgehetmann D, Govc D, Smith JP, Levi R (2020). Computing Persistent Homology of Directed Flag Complexes. Algorithms. 13(1):19. doi: https://doi.org/10.3390/a13010019

Markram H et al (2015). Reconstruction and Simulation of Neocortical Microcircuitry. Cell. Oct 8;163(2):456-92. doi: 10.1016/j.cell.2015.09.029. PMID: 26451489.
Reimann MW, Nolte M, Scolamiero M, Turner K, Perin R, Chindemi G, Dłotko P, Levi R, Hess K and Markram H (2017) Cliques of Neurons Bound into Cavities Provide a Missing Link between Structure and Function. Front. Comput. Neurosci. 11:48. doi: https://doi.org/10.3389/fncom.2017.00048

Reimann MW, Riihimäki H, Smith JP, Lazovskis J, Pokorny C, et al. (2022) Topology of synaptic connectivity constrains neuronal stimulus representation, predicting two complementary coding strategies. PLOS ONE 17(1): e0261702. https://doi.org/10.1371/journal.pone. 0261702

Riemann MW et al. (2022) Modeling and Simulation of Rat Non-Barrel Somatosensory Cortex. Part I: Modeling Anatomy. bioRxiv 2022.08.11.503144; doi: https://doi.org/10.1101/2022.08.11.503144

Santoro, Matteo (2021) Studying motifs in connectome models. Masters project, Brain-Mind Institute, EPFL.
Pedro Conceição, Dejan Govc, Jānis Lazovskis, Ran Levi, Henri Riihimäki, Jason P. Smith; An application of neighbourhoods in digraphs to the classification of binary dynamics. Network Neuroscience 2022; 6 (2): 528-551. doi: https://doi.org/10.1162/netn a 00228

Santander DE et al (2023). General functions to analyze connectomes. https://github.com/danielaegassan/connectome analysis

