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Personal overview

▶ 2014 - 2019: University of Illinois at Chicago

▶ 2019 - 2020: University of Aberdeen

▶ 2020 - 2025: Riga Technical University

▶ 2023 - 2024: Printful

▶ 2025 - : University of Latvia

My work is...

▶ motivated by the deep structural tools that algebraic topology provides and which
computational topology can realize

▶ often with teams and in interdisciplinary projects

▶ very frequently with a biological theme
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Presentation overview

▶ Relevant mathematical structures

▶ Graphs, simplicial complexes, invariants

▶ Neuro-topology: neural circuit structure and function through a topological lens

▶ BlueBrain Project, digital reconstructions, simulations and classification

▶ Eco-topology: Ecological inferences for hypervolumes

▶ Filtrations, the Vietoris–Rips complex, Persistent homology
▶ Bounding distances between persistence diagrams

▶ Tracking dynamics: Topological changes at the foundations

▶ Factoring the boundary matrix
▶ Taking apart the machinery for computing persistence
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Graphs

The basic mathematical concept throughout this talk will be a finite set.
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▶ The pair G = (V ,E ) is an undirected graph, with E = {{0, 1}, {1, 2}, {1, 3}, {2, 3}}.
▶ The pair G ′ = (V ,E ′) is a directed graph, with E ′ = {(0, 1), (1, 2), (1, 3), (2, 3), (3, 2)}.

We are interested in particular subgraphs of G ′, with V ′ = {1, 2, 3}:
▶ V ′ and (1, 2), (1, 3), (2, 3) form a directed 3-clique, as do (1, 2), (1, 3), (3, 2)

▶ V ′ and (1, 2), (1, 3), (2, 3), (3, 2) form the closed neighbourhood of vertex 3 (or 2)
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Simplicial complexes

Let K be a simplicial complex on the finite set K0.

K =

▶ A 0-simplex is a set with a single element.

▶ An n-simplex is a set with n + 1 elements, for which every subset of size n − 1 is an
(n − 1)-simplex. The set of n-simplices is denoted Kn.

▶ A simplicial complex K is a set of simplices for which σ ∩ τ ∈ K , whenever σ, τ ∈ K .

→

The simplicial complex associated to a directed graph is its directed flag (or clique) complex.
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Invariants

If G has a reciprocal edge or multiple edges, the associated topological space is a cellular
complex K , which is defined by gluing copies of the n-cell Dn to Kn−1 to form Kn.

→

From every graph or complex, we can compute values that represent some underlying feature.

Euler characteristic : χ(K ) =
∑

n(−1)n|Kn|

transitive clustering coefficient : tcc(K , v) = number of 3-cliques containing v
number of theoretically possible 3-cliques containing v

adjacency spectral gap : difference between the two largest moduli of eigenvalues of A

(Bauer) Laplacian spectral gap : Laplacian for directed graphs without strong connectivity

Main idea: describe properties of closed neighbourhoods with numerical values.
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The BlueBrain Project

The Blue Brain Project (2005 - 2024) presented a complementary way to model the brain

▶ Encode electro-morphological neuron types of adult mouse in algorithms

▶ Reconstruct parts of neocortex and somatosensory cortex in a computer

▶ Stimulate and observe activity at neuron and synapse level

digital reconstruction mathematical interpretation work continued by OBI
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BBv5 connectome

▶ Structure: 31k neurons, 7.8m connections, 55 EM types

▶ Topology: Compared with random models, high dimensional cliques are overrepresented

▶ Robustness: Reciprocal connections preferentially appear in high dimensional cliques

▶ Activity: The number of active n-cliques can be used to classify simulations



Introduction Neuro-topology Eco-topology Tracking topological changes

Classifying simulations by neighbourhoods

▶ Compute parameter p1 for every neighbourhood, select highest / lowest n

▶ For each selected neighbourhood, compute parameter p2 of m active subgraphs

▶ Classify feature vectors of length n ·m · 8 · 557 with SVM

Validate: random selection, smaller regions, random regions, shuffled activity, NEST simulator

Main result (Conceição, Govc, Lazovskis, Levi, Riihimäki, Smith. 2022)

Simulations on neural circuits can be classified with high accuracy considering only the
structure of and activity on a small number of neighbourhoods.
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Reliability in neural circuits

▶ Does there exist a random directed graph
model with predetermined clique counts?

▶ How can firing rate be decoupled from every
other parameter in active subgraphs?

The level of tradeoff between efficiency and
robustness depends on the reliability of the
sytstem

▶ The brain finds the sweet spot by having
heterogeneous connectivity

▶ This is quantified by neighbourhoods with
high dimensional simplices that are very robust,
but very inefficient
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Distances and filtrations

The Vietoris–Rips complex of a finite set is determined by pairwise distances among elements.

X = VR(r)n =

{
σ ⊆ X :

|σ| = n + 1
d(x , y) ⩽ r ∀ x , y ,∈ σ

}

Increasing the threshold r < r ′ < r ′′ induces a filtration, or a sequence of nested spaces.

VR(r)

⊆

VR(r ′)

⊆

VR(r ′′)

The simplex-wise filtration of a simplicial complex has one simplex added at each step.
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Persistent homology

At each step r of the filtration F , compute the homology H∗(Fr ) of the space Fr .

H0(Fr ) = Z4, H1(Fr ) = Z

⊆

H0(Fr ′) = Z, H1(Fr ′) = Z2

⊆

H0(Fr ′′) = Z, H1(Fr ′′) = Z

Compose these assignments as R
F−→ Top

H∗−−→ Vect to get the persistent homology of F .

Z
Z
Z
Z

Z
0
0
0

Z
0
0
0

r r ′ r ′′
Z
0

Z
Z

0
Z

r r ′ r ′′

The birth and death times of each interval are determined by unique module decomposition.



Introduction Neuro-topology Eco-topology Tracking topological changes

The ecological niche and hypervolume

Environmental parameters (temperature, rain, sunlight, ...) are key to every species’ survival.

Given a particular species:

▶ its niche is bounded by the range of environmental parameters in which it can exist

▶ its realized niche is the subset in which the species is observed

▶ its hypervolume is an approximation of the realized niche as a subset of Euclidean space
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Constructing a biologically accurate hypervolume

▶ The size of a climatic niche is hypothesized to drive species diversification rates

▶ The similarity of species’ environmental or functional trait hypervolumes measures niche
divergence or packing, which may influence species coexistence and richness patterns

▶ Niche similarity also helps compare individuals within a species, assessing climate change
impacts and niche shifts during invasions

Inherent problem: observations are heavily skewed to humans (with database access)

public
database

species
observations

environmental
parameters

project to
subspace

compute
hypervolume

→ → → →
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Current and proposed hypervolume methods

▶ (Gaussian) KDE infers
new data nearby each true
observation

▶ Topology infers new
data between collections of
true observations

▶ Both methods infer
more samples and
uniformize with respect to
density
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A complementary approach

Barycentric subdivision: Add the average of k + 1 elements (k = 1, 2) within a distance δ > 0:

X = , B(X , δ) = = X∪
⋃
k

{ ∑
σi

k+1 : σ = {σ0, . . . , σk} ∈ VRδ(X )k
}

Sparsification: Remove all other elements within a distance ε > 0 of each element:

X = , S(X , ε) = = {x ∈ X : d(x , x ′) > ε ∀ x ′ ∈ X , x ′ ̸= x}
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Topological guarantees

Main result (Lazovskis, Levi, Morimoto. 202x)

Let X ⊆ RN be a finite set and DX its persistence diagram of the Vietoris–Rips filtration
in degree 0. Then dW (DX ,DB(X ,δ)) ⩽

δ
4 and dW (DX ,DS(X ,ε)) ⩽

ε
2 for every δ, ε > 0.

S(X , ε)

X

B(X , δ)

DS(X ,ε)

DX

DB(X ,δ)

eruleS(X ,ε)

≃

eruleX
≃

eruleB(X ,δ)

≃

ιS

ιB

φS

φB

▶ Constructed relation between persistent homology
computation and hardware limitations

▶ Respects original data and maintains uniform density
in hypervolume

▶ Next: Align to grid, take complement, use duality
for top-dimensional holes. Track over time.
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Persistence diagrams
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bounday matrix factorization
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barcode from pivots of R

The standard barcode algorithm performs Gaussian elimination on D to produce the barcode.
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Dynamic data

How does the boundary matrix of the Vietoris–Rips filtration change in dynamic settings?

initial state insert into
filtration

+ +++

+
+
+
+
+

swap order remove from
filtration

− −

−

−

final state

▶ The number of simplices n is exponential in the number of points

▶ Insertion is reindexing, swapping is known to be O(n)
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Removing a simplex

Removing a simplex σ ∈ K means removing all cofaces of σ, described by the star st(σ) of σ.

The SiRUP algorithm:

▶ For each simplex τ ∈ st(σ), collect the off-diagonal entries in the column of τ in U

▶ Adjust the columns in R and U for each affected simplex to respect class representatives
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Minimality

Main result (Giunti, Lazovskis. 2025)

Given the reduced boundary matrix of F as input, SiRUP will output the reduced bound-
ary matrix of F \ L with O(mn2) operations, where m = |L| and n = |F|.

Combine repeated additions to involve each affected column exactly once in an operation.

reduced boundary
matrix

relevant
submatrix

add back
column of σ

apply standard
barcode algorithm
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Thank you
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