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In this course, we will study manifolds equipped with Riemannian metrics, which will allow us to measure
different things. These are some of the topics we hope to cover:

- Special curves called geodesics

- Curvature of Riemannian manifolds

- Hopf-Rinow theorem

- Submanifolds and the associated Gauss-Codazzi equations
- Gauss-Bonnet theorem

- Hodge theorem

- Bochner-Weitzenbock formula

1 Review

1.1 Smooth manifolds

Definition 1.1.1. A topological n-manifold M is a Hausdorff, second-countable, topological space that is
locally Euclidean of dimension n. This means that for all p € M, there exists an open set U > p and a map
wu : U — oy (U) C R™ whose image is also open.

The pair (U, py) is called a coordinate chart.

Definition 1.1.2. Let M be a topological n-manifold. A smooth structure on M is a collection of charts
{(Ua,¢a) : @ € A} such that J,cy Us = M and U, NUg # 0 implies that ¢, o gp/;l tpg(Ua NUB) —
0o (Ua NUg) is a diffeomorphism.

M

A smooth n-manifold is a topological n-matifold together with a choice of smooth structure. In the context
of this course, all manifolds wirr be smooth manifolds with fixed structure.

¢p(Up)

Example 1.1.3. Some examples of smooth n-manifolds are R, S*, RP™. If M is a smooth m-manifold
and N is a smooth n-manifold, then M x N is a smooth (m + n)-manifold.



Note that for manifolds, connectedness is equivalent to path-connectedness.

Definition 1.1.4. Let M, N be manifolds. A map F : M — N is termed smooth if all of its coordinate
representations are smooth.

Note that smoothness is a local property. A map is smooth at p € M if and only if it is smooth when related
to an open manifold of p.

Above, (U, ) is a chart for M and (V,4) is a chart for N, with F(U) C V.
In this course, all maps will be smooth.

Definition 1.1.5. A map F': M — N of manifolds is a diffeomorphism iff it is a smooth bijection with a
smooth inverse.

Definition 1.1.6. A Lie group G is a group that is also a smooth manifold. It must be that the group
operation (z,y) — xy~! is a differentiable map of G x G to G. Fundamental Lie groups are:

- GL(n,R), the invertible n x n matrices over R, with size n?

- GL(n,C) as above, but over C and with size 4n?

Definition 1.1.7. Let M be a manifold and U = {U,, : « € A} be an open cover of M. Then a partition of
unity subordinate to U is a collection of maps 1, : M — R such that for all a € A:

1. 0< Yo(p) < lforallpe M

2. supp(Ya) = {p € M : Yo(p) # 0} C U,

3. for all p € M, there exists an open set W), 3 p such that W), Nsupp(¢a) # 0 for only finitely many o
4. > Ya(p)=1forallpe M

Note that there always exist partitions of unity. They are used to “patch together” local constructions to
get global constructions. Besides that, they are also used to:

- Define integration of n-forms on M

- Extend local objects to global objects (functions, vector fields)
- Prove existence of Riemannian metrics

- Prove existence of connections on vector bundles

1.2 Tangent vectors and derivations

Recall that C°°(M) is the set of smooth functions from M — R, an infinite-dimensional vector space, as
well as a commutative algebra with identity.



Definition 1.2.1. Let p € M. A derivation at p is a linear map X, : C*°(M) — R such that the Leibniz

rule is satisfied, namely
Xp(f9) = (Xpf)g(p) + f(p)(Xpg)

Definition 1.2.2. The tangent space of M at p, denoted T, M, is the space of derivations at p. Note that
T, M is an n-dimensional real vector space, where n = dim(M ).

The action of a tangent vector X, € T,M on C*°(M) as a derivation “is” the directional derivative of f at

p in the direction of X,.

M

Definition 1.2.3. Let F : M — N be a map of manifolds, with p € M. Then there is an induced linear
map (Fy)p : TpM — Tp) N, termed the pushforward of F at p, or differential of F at p.

hoF

R

With respect to the diagram above, it is straightforward to check that the following identity is satisfied:

((F2)p(Xp))(

h )=X,( hoF )
ETrp N eC>(M) €C>(M)
Remark 1.2.4. For maps F,G : M — N, we have that (G o F), = G, o F, and (idy)« = idg, ps. Hence if
F is a diffeomorphism, then (F), : T,M = Tr(pyN is a linear isomorphism.

Also note that the tangent space is local, so if U C M is open with p € U, then T,,U = T,M. Moreover, we
have the following identification, given the situation on the left:




Definition 1.2.5. Let {(e1)p,. .., (en)p} be the standard ordered basis of T,,,)R". Define
0

ox*

= (ps); ((ex)p) € TLM

Then the coordinate basis of T, M associated to the chart (U, ¢) is given by
0 0

oat | dan

p

Let f € C*°(M). The expression % |p f denotes the partial derivative in the eg-direction of the coordinate
representation of f at p. With this, we have that

gar| 1= (@ -e0s
=ex(fop™)
= exf
= 2L o)

Remark 1.2.6. Let F : M™ — N* be a smooth map of manifolds, with (Fu)p : T,M — TrpyN a linear
map. Define the following values:

(U, ) is a chart containing p

|p,..., % p} is a basis of T, M 0(q) = (' (q),...,2"(q)), ¢ €U

0
Ozt
(V,4) is a chart containing F'(p) 8%1 ) % ‘ F(p)} is a basis of Tp(,) N P(s) = (y1(s),...,y"(s)), s€V

‘F(zv)""

Then the k x n matrix for (F}), with respect to these bases is

(F)p)iy = 5 (0(0)

This is the Jacobian matrix at ¢(p) of the coordinate representation F= 1o F ot Tomake a change of

coordinates between two charts (x!,...,2") and (z,...,2") around p, for X,, € T, M, we have
n n n ~7
.0 .0 - 01
o 7 . ~q ~i j
N=2 0 g | =20 5 =2 )
i=1 P i=1 p Jj=1

Definition 1.2.7. A smooth curve on a manifold M is a smooth map « : I — M, where I is the open
interval in R.

Let to € I and p = a(tg), as above. Then we have a map (. )z, @ Tt,R = Ty (1) M, noting that T3 R = R.
We then define the velocity vector of a at a(tg) to be

o/ (to) = (0 )iy (jt

) S Ta(to)M

to



In local coordinates, this may be expressed as

Note that every tangent vector in T, M may be expressed as a velocity vector at p of a smooth curve through
p, in many ways. Such an interpretation of tangent vectors gives us an easy way to actually compute the
pushforward explicitly in practice.

For instance, let F : M — N, p € M, and X,, € T,M. Choose any smooth curve a : I — M such that
a(0) = p and &/(0) = X,,.

Then (F,),(X,) = (F o a)'(0). Observe that F o « is a smooth curve on N, and (F o «)(0) = F(p).

1.3 Tangent bundles and vector fields

Definition 1.3.1. Let M be a manifold. Then the tangent bundle of M is defined to be the smooth
2n-manifold
T™ = | | T,M ={(p,vp) : p€ M,v, € T,M}
peEM
Consider a map 7 : TM — M, given by m(p,v,) = p. This is termed the projection map. Then if (U, ¢) is a
chart for M, it induces a chart (U, ) for TM as follows:

(&0

= ('Tl(p)v s ’xn(p)’ al(pa Up)v S 7an(p7 U;D))

Definition 1.3.2. A smooth vector field on M is a smooth map X : M — T'M such that mo X = id,,, that
is, m(X,) = p.

Note that here we have expressed the tangent vector as a function, i.e. X(p) = X,. This function in local
coordinates may be given by

n ; a n ; a
i=1 i=1

Here the a; are smooth functions defined on the domain ¢(U) of the chart. We also define I'(TM) to
be the space of smooth vector fields on M, which is an infinite-dimensional real-valued vector space (or a

€ T,M
p



C*°(M)-module). This gives the following relations, for p € M:

X € TI(TM) fX e T(TM)
foe oxm) (fX)p) = fp)Xp € T,M

Remark 1.3.3. Given X € I'(T'M), there is an induced map X : C*°(M) — C*°(M), such that for

h € C*(M), (Xh)(p) = Xph. In local coordinates, X = >, a’ a?ci'

Also note that X is linear over R, and satisfies the Leibniz rule, namely

X(fg)=f(Xg)+(Xf)g

Definition 1.3.4. Let F : M — N be a map of manifolds, and X € I'(TM), Y € T'(TN). Then we say
that X and Y are F-related iff T, N > (F.)p X, = Yp(p), for all p € M. This follows, by the definition of
a pushforward, iff X(ho F) = (Yh)o F for all h € C*°(N).

2 Operations on vector fields

2.1 The Lie bracket of vector fields

Definition 2.1.1. Let X,Y € I'(T'M). Then the Lie bracket of X,Y is denoted by [X,Y]. It is a vector
field on M, defined by
(X, Yf=X(Y[)=Y(Xf)  feC™(M)

Locally, the explicity function is given by

0 .0 . Ob 0a?\ 0
N _ i _ X1 v
X=a oz’ y=0 dzi X, Y] (a oz’ b 8xi> Oz

The Lie bracket satisfies the following properties, for all X,Y,Z € T'(T'M) and f,g € C°(M):

1. [X,Y] is R-linear in X and Y

2. [X.Y] = —[V,X]

3. [X. Y], Z1+[Y. 2], X] + [[2, X].,Y] =0

4. [fX,gY] = f9lX, Y]+ f(X9)Y — g(Y )X € I'(T'M) The first three conditions indicate that I'(T'M)
is a Lie algebra. The third condition is also termed the Jacobt identity.

Proposition 2.1.2. Let F': M — N be a map of manifolds. Suppose X1, Xs € T'(TM) and Y7,Y5 € T(TN),
and that X, is F-related Y; for j = 1,2. Then [X;, X;] is F-related to [Y7,Y>]. In particular, F,[Xq, Xo] =
[F. X1, F. X5].

Example 2.1.3. Let G 3 a be a Lie group. Define L, : G — G by L.(G) = ag, left-multiplication by a.
Then the map is smooth, with L,~; = (L,)~*. This follows as L, is a diffeomorphism of G for all g € G.

Definition 2.1.4. A vector field X € I'(T'G) is termed left-invariant iff (Lg).q(Xy) = Xqq for all a € G.

A left-invariant vector field X on G is L,-related to itself for all a € G.



Proposition 2.1.5. The set of all left-invariant vector fields on G is a Lie subalgebra (a vector space closed
under the Lie bracket) of T'(T'G) of dimension dim(G).

Proof: Since (Lg).4 is linear, J is a vector subspace of I'(T'G). We need to show that it is closed under the
Lie bracket:

(La)«[X, Y] = [(La)+ X, (La): Y] = [X, Y]
The last equality follows as X,Y are left-invariant. Hence [X,Y] € J.
Now we will show that J = T, G, for e the identity element. Consider the map ¢ : T.G — I'(T'G) given by

(U(Xe))g = (Lg)we(Xe) € T,G with (Lg)se : TeG = Tp(e)=gG

We leave it as an exercise to show that ¢(X.) is a smooth map G — T'G. To show this, use local coordinates
and the fact that multiplication in G is smooth. Our next claim is that ¢(X.) € J is a left-invariant vector
field. This follows as:

(La)*g((g(Xe))g) - (La)*g((Lg)*e(Xe)) - (La ° Lg)*e(Xe) - (Lag)*e(Xe) - (K(Xe))ag

We leave it as an exercise to check that ¢ is injective and surjective onto 7, which will give that ¢ : T.G — J
is an isomorphism. |

Remark 2.1.6. With respect to the above proposition, J = T,.G is called the Lie algebra of the Lie group G.
So if v,w € T.G, we let [v,w] = [{(v),l(w)]. € T.G. Moreover, if f: G — H is a Lie group homomorphism
(that is, f(ab) = f(a)f(b), and f(e) = e), then (fi)e : TeG — T.H is a Lie algebra homomorphism. Also
note that then [(fi)ev, (fi)ew] = (fi)e[v, w].

2.2 Integral curves of vector fields

In this section, we will see that vector fields are infinitesimal diffeomorphisms.

Definition 2.2.1. Let M be a manifold, and V' € T'(TM). An integral curve of V is a smooth curve
v : I — R such that v'(t) = V, (4.

Example 2.2.2. Let M = R? with global coordinates (x,y). Any vector field on M is given by a(x, y)a% +
b(x, y)a% for smooth functions a, b.



Example 2.2.3. Let M = R? and consider the following vector field:

y

a a / Voes //4/47‘\\\\\\\
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_xa ) Y ¥ ¥ s st~ X
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= x(t) = xocos(t) + yo sin(t) NNNN S~ f o rm s A
. \\\\\\‘—»»//////4

= y(t) = xosin(t) —yocos(t) ViteR NOCR S s p A A A
NN S CC O S S 0.0

Remark 2.2.4. How is it possible to find integral curves? Let p € M, and let (U, ¢) be a chart containing p,
with V = Vi(zt, ... 2") aii . Then a curve 7 in local coordinates looks like poy = () = (x(t),... ,z"(t)),
giving

dx® 0
a M g

TyipyM > +'(t) =
y(t)

To have 7/(t) = V), we need % =Vi(zt(t),...,2"(t)) for all i = 1,...,n and t € I, the domain of 7.
This is a system of a first order ODE, which leads us to the following theorem:

Theorem 2.2.5. [PICARD, LINDELOF]

Given initial conditions 2°(0) = z, € R for all i = 1,...,n, there exists a unique solution (z'(t),...,z"(t)) to
the system of first order ODEs above for t € (—¢, €), for some e. Furthermore, the solution depends smoothly
on the initial conditions.

Example 2.2.6. Let M = R2, and consider the following vector field:

VLV VYV VYV VYV VYV VY

0 0 PRSI SIS

V=y—+— PO PO PSSO S S

Ox 0 AAAA A A A A AT

, 0 , 0 AAAAAA AT A A A A A A

V = (t)——}—y(t)f VAP AV AV AN D BV A A A A A

81' ay P A A A A A A A
\\\\\\\\\\\\\\ X

LS T S S S S S Y

y’=1 = y=yo+t A N S RN

, , A N S NN

r=y = I =yg+t IS S S L SN NN

ASEE S EE N E L E LN XN

= T =0+ yOt + %t2 ASS S S AR AR SN NS SN W
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Here we see that solutions do indeed exist for all ¢ € R.

Example 2.2.7. Let M = R? and consider the following vector field:

y

e e - T
N I
e e o L e
B I I P
9 b BOGHS N e
V:x27+7 e P
ay 855 e e o T

x
e e o L e e
mI:xQ y/:1 P P
B A P
e e - P
e e - T
- R —
e o L e




Next we will package the integral curves together with a vector field.

2.3 Flows

Definition 2.3.1. Let V € T'(TM) Suppose for simplicity that there exists an integral curve of V given
by ©®) : R — M for all p € M, with @(p)(O) = p. For all t € R, define a flow on M to be the function
O; : M — M, with ©,(p) = ©®)(t). This is a function that follows the integral curve that starts at p for
time t. The space V associated to © is termed the infinitesimal generator of ©.

Let ¢ = ©)(s), and consider the smooth curve ©®)(t + s) = ~(t). For this curve,
1(0) = 09(5) =g

()= 2

d
@l 0P (t +s) = Tu O (u) = Vow (s =V

Therefore v(t) = ©(@(s). By uniqueness of integral curves,
Orrs(p) = OP(t +5) = O4(q) = ©4(O4(p))

Hence O445 = ©; 0 ©4, meaning that if we follow an integral curve for time s, then time ¢, it is the same as
following the curve for time s + ¢. This law, among others, gives us a complete perspective on flows:

@t+s = ®t+s
o;'=0_,
Op =idy

O, : M — M is a diffeomorphism of M for all ¢

The last statement holds because the ODE theorem gives smooth dependence on time.

Definition 2.3.2. Let M be a manifold, and for p € M, suppose that there exists ¢ > 0 such that
v : (—€,¢) = M is an integral curve of V' with v(0) = p. If all integral curves of V are defined for all ¢t € R,
then V is termed a complete vector field.

Definition 2.3.3. A global flow on a manifold M is a smooth map © : R x M — M such that for all ¢, s € R
and p e M,

O(t,0(s,p)) = O(t + s,p)
©(0,p)=p
Notationally, we may associate this to the presentation of flows above:
- define ©; : M — M by ©:(p) = O(t,p)

- define ©) : R — M by ©P)(t) = O(t,p)
Now these statements are equivalent to the ones above.

10



Theorem 2.3.4. [FUNDAMENTAL THEOREM OF GLOBAL FLOWS]
Let © : R x M — M be a global flow. For all p € M, define V,, = ©)(0) € T,M. Then p + V,, is a smooth
vector field on M, and each ©®) is an integral curve of V.

Proof: First, we need to show that V' is smooth. It is enough to show that V f € C>°(M) for all f € C*>°(M).
This is left as an exercise. So first we observe that

V,f =00 (0)f = % f(eP () = % f(O(t,p))

is smooth as a function of p. Hence V is smooth. Next, we need to show that ©®) is an integral curve of V.
This implies showing that ®(p)’(t0) = Vow () for all p € M and ty € R. Define some values as follows:

g =0 (to) = O4,(p)
0D (t) = ©1(g) = ©1(O1, (p)) = Or1, () = OP (¢ + o)
Now observe that
0/ (t) = 0@/ (t 4 t4) and 0D (0) = 0@ (ty) =V,

This completes the proof. |

However, in general we have the problem that a vector field does not determine a global flow. To resolve
this issue, we introduce the idea of a flow domain.

Definition 2.3.5. For a manifold M, a flow domain is an open subset D C R x M such that for all p € M,
DP={teR : (t,p) € D} is an open interval containing 0.

I
T,

Definition 2.3.6. A local flow on a manifold M is a smooth map © : D — M such that ©(0,p) = p for all
p, and t € DOGEP) for all s € D@ such that

s+teDP — O(t,O(s,p) = Ot + s,p)
In other words, the group law holds whenever both sides are defined.

Remark 2.3.7. The fundamental theorem of flows may be equivalently stated by replacing the first sentence
with: Let © : D — M be a flow. The proof is the same, as the fact that © was global was never used.

Theorem 2.3.8. [FUNDAMENTAL THEOREM OF GLOBAL FLOWS, PART 2]
Let V € T'(TM). Then there is a unique maximal flow © : D — M whose infinitesimal generator is V. This
flow satisfies the following:

1. for all pe M, ©® : D®) — M is the unique maximal integral curve of V starting at p

2. if s € DP) then DOGP) = DP) — s ={t —5:tc DV}

3. forallte R, My ={pe M : (t,p) € D} is open in M
4. for all (t,p) € D, (04):Vp, = Vo, (p)

The last statement asserts that V is O-related to itself. We say that V is then invariant under the diffeo-

morphism Oy, written (0;).V =V, though here, V is restricted to M.

11



Proof: 1. By the ODE theorem, there exists an integral curve « starting at each p € M. By uniqueness, any
two such curves agree on their common domain. For p € M, let D®) = (union of al open intervals I C R
containing 0 on which an integral curve starting at p is defined). Define @) : D®) — M by OP)(t) = ~(t)
for any v whose domain contains ¢. Then this is a maximal integral curve by construction that is well-defined
and smooth.

2. This is clear, and is left as an exercise. It relies on the (easily provable) fact that if D is open, then
©:D — M is smooth.

3. Let My = {pe M : (t,p) € D}, which is open as D is open and © is continuous. Then p € M,
implies that t € D) and D) — ¢ by 2. Hence —t € D®P), 50 ©,(p) € M_,. Therefore O, : My, — M_,.
And by the group law as before, G)t_l =0_4, 50 O : My — M_; is a diffeomorphism.

4. Let (to,p) € D, and g € Oy, (p). We want to show that ((©y,)«)pV, = V4. To show this, we apply both
sides to f € C(V) for U C M open, where g € U. This gives:

(O4)x Vo f = Vp(f 0Oy) (by definition of (O, )+)
= 0®(0)(f0O4,) (as ©P) is an integral curve of V starting at p)
d
= 2| (Jo6,) @)
t=0
d
~a o f(Ot14,(p))
=2 e+ 1)
dt | ,—g
= 001/

= Vow (to)f (as ©P) is an integral curve of V)

This completes the proof. |

Our next goal for the following lectures will be to prove the theorem below:

Theorem 2.3.9. [FROBENIUS THEOREM]
Let M be a manifold. Let Vi,...,V,, be smooth vector fields on an open subset of M. Suppose that

{"] P Val p} is a linearly independent set. Then there exists a coordinate chart (w, ) containing p such

that in these coordinates, V; = %.

This is equivalent to saying that [V;, V;] = 0 for all 4, j.

2.4 Regular and singular points

Definition 2.4.1. Let V € I'(T'M). A point p € M is termed a singular point of V if V, = 0. If V,, # 0,
then p is termed a regular point.

Lemma 2.4.2. Let V € T'(TM). Let © : D — M be the flow whose infinitesimal generator is V. If p is
a singular point of V, then D® = R, and ©® : D) — M is an immersion. That is, (@ip))t : T, DWP)
T@(m(t)M is injective.

Proof: If V; = 0, then v : R — M is defined by v(t) = p for all ¢, which is a smooth curve on M with
7' (t) = 0 = V() = V. By uniqueness, this is the maximal integral curve starting at p.

For the second part, note that if V, # 0, then we let v = ©®). We need to show that +/(t) # 0 for all
t € DW). Let tg € D) and g = v(ty). Then by the fundamental theorem of global flows, V, = (64,)«(V}).

12



But (Oy,). is an isomorphism T, M — To,, (M, since Oy, is a diffeomorphism. So V,, # 0, which implies
that V, # 0. [ |

Theorem 2.4.3. [CANONICAL FORM THEOREM (OR FLOW BOX THEOREM)]

Let V' € I'(T'M) with V,, # 0. Then there exist local coordinates (ul,...,u™) on a neighborhood of p in

which V has the form V = ai

ul -
Heuristically, the theorem changes the vector field of a neighborhood on the manifold as follows:

U, ..U
2 //;_:;\ 174 ¥ i(,,1 ny_0
, \ ——=a'(u', ... u") 5
/ —\
I | 1
! | u The theorem states that
\ / 1 1 y
% . Y at =1, a* =0 for all other ¢

Proof: We need to find a coordinate chart (U, ) such that (p=1), (%) = V. This question is local, so

WLOG we may assume that M is an open subset U C R™ with coordinates (z!,...,2") centered at p.
22, an
-1~ UCM
/ \\\
l/ \1 1
|\ p=0 II X

By reordering the coordinates, WLOG V,, has a non-zero component in the direction 5%1 |p. Let ©: D —=U
be the flow of V. Then there exists € > 0 and a neighborhood Uy C U of p such that (—e,€) x Uy C D by
the ODE theorem.

Now, let Sy C Up be defined by Sy = Uy N {z! = 0}, and S C R™ be defined by S = {(u?,...,u")
(0,u?,...,u") C Sp}. Define the map ¢ : (—¢,€) x S — U by (ul,...,u") = O,:(0,u?,...,u"), giving:

31‘2, 7xn u27 7’11,”
AU //;\
// Pt ‘\U\O\\
/ N\ N
~-|-- SO W S
Then for each flow (u?, ..., u™), ¥ maps (—¢, €)x{(u?,...,u™)} to the integral curves starting at (0, u?,...,u") €

Uy. Next, we claim that v pushes % forward to V. To see this, let (to,uq) € (—¢€,€) x S. Then

0 0
W <8u1 (to,UO)> I= g (Fog) = o= F(©u1(0,u0)) = Vip(ro,uo) f

Oul (to,u0)

(to,u0)
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The first equality follows from the definition of a pushforward, and the second follows from the definition of
1. The last equality follows as ©; is an integral curve of V. note also, that when restricted to {0} x .S, we

have p(0,u?,...,u") = (0,u?,...,u"), because O = id, and
0 0
(Yu) =— = 5 fori=1,2,...,n
oul 0,0) oz' |,

Hence at (0,0), the map v, takes

0 0
— to Vo —5
<8u1 (070)> (p dx® P p)

So («)(0,0) takes a basis to a basis, so it is an isomorphism, meaning that by the inverse function theorem,
there exists an open neighborhood W > (0,0) and an open neighborhood W = (W) > p such than
¥ : W — W is a diffeomorphism. Let ¢ = ¢~ : W = W, for W C Uy open, and so

0 (o) =) (g07) =

as desired, thus completing the proof. [ |

0

,...,,Txn

9
ou?

9
T oun

(0,0 7 (0,0 o

Example 2.4.4. Let M = R?, and V = ya% + 8%' The integral curves are ' = y and (t) = (xg +

Yot + 3t%,y0 +t). We take p = (2,0), so (z9,y0) = (2,0), which implies that v(t) = (2 + 1t2,¢), and
o

Vi = oyl #0-

M

!

% (2,0)

Here, So = {(u,0) : u € R}, and ¢ : R? — R? is given by ¢(u,t) = O4(u,0) = (u+ 3t2,t) = (z,y). What
is V in (u, t)-coordinates? We know that

0 ou 0 ot 0

9z 0z ou ' ox Ot
~ =~
o ou o o 0

ay Oy ou By ot
.
= Vot
Z—ti—i-g
ou Ot

This directly implies that

V_ i_i'_g—t g + _tg_t'_Q _g
—Y B ou  ot| Ot

2.5 Lie derivatives

Definition 2.5.1. Let M be a manifold, and V € T'(TM). Let © : D — M be the flow of V. Then
O, :My={peM : (t,p) € D} - M_, is a diffeomorphism, and (0;)., : T,M =5 To,pyM is an

14



isomorphism.

(integral curve of M)

Ve, )

Define a section of the tangent bundle £,W : M — TM with wo (Ly W) = idps. The value (Ly W), € T, M
is termed the Lie derivative in the direction of V' at p, and defined by

(2w, =l [ 7 (007" (Wer) W5
— lim E (W, — ((—)t);l(wet(p)))]
» (07 (We, ()

Lemma 2.5.2. If VW € I'(T M), then Ly W € I'(TM).

Proof: Let p € M, and (U, ¢) be a coordinate chart containing p. Let Jy © 0 be an open interval and Uy C U
open such that the flow of V is © : Jy x Uy — U. In these coordinates, O(t, q) = (0'(t,q),...,0"(t,q)) is
smooth in ¢t and ¢. Moreover,

(90;1 = (@715)* : T®t(q)M — TqM
The matrix for this line map (with respect to these coordinate vector fields as bases) is

0

a:L’Z.(ai(—lf,@(t,q)) O_;:(zh ..., 2") = (O (~t, 21, .. 2n), ..., 0" (=t 2t ... ™))

= 0¢(q) =4q

Then this is smooth in ¢ and ¢, since © is smooth in ¢ and g. A vector in the basis is given by

; 0 00! ;
W - W] ("‘) t ~ — 97 *W = —t® t, Wj @ t, -
o = WO 17| = (00 o = G (1O0WIO0.0) 5|
is smooth. Further, (Ly W), = %‘tzo of the value above is smooth in q. Hence LW is smooth. [ ]

Remark 2.5.3. It is intuitively clear that to compute Ly W at p, we need to know both W and V', not just
at p, but in a neighborhood of p. We'll see this explicitly next.

Theorem 2.5.4. Let V,W € I'(T'M). Then Ly W = [V, W].
Proof: Let R(V') = {regular points of V} = {p e M : V, # 0}. Since V is continuous, R(V') is open in M.
Also, R(V') = supp(V).

The first step is to show that Ly W = [V, W] in R(V). To prove this, we use the canonical form theorem.

Let p € R(V), so there exist local coordinates near p for which V' = ail . In these coordinates, the flow of

15



Vis ©Og(xt, ... 2") = (a2t +t,22,...,2") = (y',...,y"). Also, (6;) %' s the identity matrix. Next,

* = gt
(©0); ' (We, ) = (07 |W/ (&' +t,2°,...,2") % @t(p)] =W (zt +t,2% ... 2") % )
W)= 5| (O Wo) = Grdl o) 5|
[V, W], = [ail,w] = {ail,Wj(xl,...,a:")aii} = %Wj(xl,...,x")% =Ly W

So LyW = [V, W] on R(V).
The next step is to note that by continuity, the same holds for R(V).

The final step is to let E = W \ R(V). The set E is open in M, and if p € E, then there exists an
open neighborhood W of p on which V' = 0. Then (6;), : T,M — T,M is the identity map for all
t € R, and O, : W — W is also the identity, so (0;);(We,(y)) = W, for all t. Hence (LyW), = 0,, so
[V, W], = [0, W], = 0,, completing the proof. |

Corollary 2.5.5. Let X,Y,Z € I'(T'M) and f € C°°(M). Then:
1. LxY =Ly X
2. Lx(fY) = (X[)Y + LY
3. Ex([:yZ) — Ey(ﬁyZ) — E[X,Y]Z =0
4. Lx[Y,Z] = [LxY,Z|+ Y, LxZ]

Proof: The proof of 1. is trivial, and 2. and 3. were proved on the assignment. As for 4., we simply consider
the following calculation:

[X7 [Y? Z]] = _[Zv [XvYH - [Y, [Z’ X]] = [[X7 Y],Z] + [Y’ [X7 ZH

Definition 2.5.6. Vector fields X,Y € I'(T'M) are said to commute if [X,Y] = 0, which holds if and only
if X(Yf)—Y(Xf)=0forall feC®(M).

For example, the following vector fields commute:
09 0 0]
Oy Yor “ox yay N
Definition 2.5.7. A vector field Y is termed invariant under the flow © of Y € I'(TM) if ((©y)+),Y, =
Yo, (p)- That is, Y is invariant under the flow © of Y if the flow pushes Y forward onto itself.

Lemma 2.5.8. Let F': M — N be smooth, with X €e I'(TM), Y € I'(TN), and © the flow of X and 7 the
flow of Y. Then:

1. If X,Y are F-related, then for all t € R, F(M) C Ny, and ;o f = f 0 ©; on M;. That is,

0

M, Ny

O, i commutes
Mo == N

2. Conversely, if for each p € M there exists € > 0 such that (1,0 F)(p) = (F 0 ©,)(p) for all [t| < ¢, then
X and Y are F-related.
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Proof: For 1., let D) be the domain of ©®). Observe that

(o F)(p) = (Fo®)(p) <= n"P(t)=Fo0®()
Next, let v : D®) — N be given by v = F 0 ©®), We’ll show that v = n¥'®). We first observe that
7 (t) = (Fo®P) (1) = (F.)(OW' (1) = (F.)(Xew (t) = Yreow 1) = Yy

Hence v is an integral curve of Y, with v(0) = F o ((®)(0)) = F(p), so v = n¥®) by uniqueness.
For 2., suppose that 7 ®)(t) = (F 0o ©®)(t) for all |t| < e. Then

F.(X,) = F.(0%(0)) = (F o 0P)(0) = (n" @) (0) = Vi)
This implies that X and Y are F-related. |

Proposition 2.5.9. Let V,WW € I'(TM). Let O, be the flows of V', W, respectively. Then equivalently:
1. [V,W]=0

LyW =0

LwV =0

W is invariant under the flow of V

V' is invariant under the flow of W

For each p € M, if one of (©;0;)(p) or (s 0 O;)(p) are defined, then both are defined and are equal

PO BN

Proof: The directions 1. <= 2. <= 3. are clear. So we first suppose that 4. holds. Then Wg,(,) =
(©¢)«W,, for (t,p) € D = the domain of ©. Hence (0;).We, () = W), and is independent of ¢. Further,

(Cyw), = 4

dt (@t)*WGt(p) =0

t=0

This shows that 4. = 2.. Similarly, 5. = 3..

Next we suppose that 2. holds. Define X(t) = (6;).We, ) € Tp,M to be a smooth curve in a fixed vector
space, with

X'(to) = (©-1)«Wo, )

t=to
s=0

a
dt
d
% (@40750)*W65+t0 (p)
d

(O—ty)«(O—5)sWe,(0,,)(»)
s=0

= (e—to)*
= (O-19)(
=0

ds

(©—5)«We, (@)
s=0

vIV)e.m))

a
ds
(L

So X'(t) = 0 for all ¢, implying that X (¢) = X(0), so (©1).W, = Wg, (). Hence 2. = 4.. It remains to
show that 3. = 5..

Let My be the domain of ¢;. The statement 5. says that (¢;).V, = Vi, (p), which also means that V|,
is ¥s-related to V[, . By the previous lemma, this is equivalent to (O o ¢5)(p) = (¥s © ©)(p), whenever

@t(p) € Ms~ n
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Theorem 2.5.10. [FROBENIUS]
Let M™ be a smooth manifold. Let V7, ..
U C M. Then equivalently:

., Vi be smooth linearly independent vector fields on an open subset

1. there exists local coordinates (u!,...,u™) on a neighborhood of each p € U such that V; = % for
eacht=1,2,...,k.

2. [Vi,Vx] =0forall i,j
Proof: 1. = 2. This follows as coordinates of vector fields must commute.

2. = 1. Let p € U, and choose local coordinates z!,...,z" centered at p. The first claim is that by
0 0

relabelling coordinates,
V1|a"'7Vk‘7? vty o )
< p PR O] dx™ |,

is a local basis of T, M. This follows by letting ©; be a flow. Our second claim is that there exists an € > 0
and a neighborhood W' > p such that Oy, 0©y_1[,  o---0O1], is defined on W and maps W into U,
whenever |t1],...,|tx] < e. This claim holds by choosing €; > 0 and U; C U a neighborhood of p. Then,
choose €; > 0 and U; C Uj41 such that ©; : (—e,e) x U; = U;—1. Now proceed as in the proof of the
canonical form theorem.

Define the following sets and maps:
S():Wﬂ{x’”l ::xn:()}
S ={@ .. u™) 2 (0,...,0,4 L u) e W)

// x x ul o u
N o |/ o
So p:P(A) — A S
o
Yv: (—6e) X x(—€€) xS — U
(ul, ..., u™) = (Of)yr 00 (01)u1(0,...,0,uk T o un)

We will show that 1/ is a diffeomorphism on an open subset of its domain, and ¥ ~! will be the required
chart. The first step is to show that for all i = 1,... k,

> = Vi|w(tI)
a

To show this, we first let ¢ € W, for which

o (

0
ou?

)’

0
ou?

6 f((@k)ukO--'O(@l)ul(o,...,o,uk+l,...

ou' |,
= ({;Zz F(©:)yi 0 (Of)yr 00 (0;)yi 0 0 (©1).,1(0, ,O,’u,k+1 Lu™))
q
=Vilyf

18



Since for all z € M, the map t — (©,)(z) is an integral curve of Vp, we have that ¢, (32;) = V; for all
i=1,...,k, which completes the first step. For the second step, we first note that

(0,...,0,uf Tt u™) = (0,...,0,a L u™)

Hence, in particular, (?/’V)(% 0) = % v for i = k+1,...,n. Therefore v, takes
0 0 0 0
— ey t Vil oo Vi, =—— ey
{ Oul Oa ) oum 0} o { 1|p7 ) k?|p7 6Ik+1 p7 ) o™ p}

Note that this is a basis, and so v, is invertible at 0. Hence by the inverse function theorem, there exists an
open neighborhood A of 0 such that 1(A) is open in W, and ¢| , : A = ¥ (A) is a diffeomorphism. Then
is a chart for M near p in which V; = ai completing the proof. ]

A

2.6 Differential forms and tensors

Definition 2.6.1. Let M™ 5 p be a smooth manifold. Consider the dual space
(T,M)* =T, M = L(T,M,R)

which is the space of linear maps, and termed the cotangent space. Further, the space

T°M = | | T;M
pEM

is termed the cotangent bundle of M. We note that T*M is a smooth 2n-manifold.

Definition 2.6.2. A smooth map « : M — T*M such that 7o « = idj; is termed a (smooth) I-form, or a
covector field on M, where the projection map is defined by

. T°M — M
(pyop) = p

such that a(p) = o, € Ty M for all p € M.

Definition 2.6.3. Let (U, ) be a chart for M. Define A\ : U — T*U so that 7 o \? = idy by

. (1 ifi=
i 0 =5 =
)‘p (83;1 p) 5] {0 lfl#]

m m
oM T,M
i 1 ny s - 9 )
So A! is a 1-form on U, and the set {A |p, oA |p} is termed the dual basis of { BT ‘p yerrs Fom |p}.

The chart (U, ¢) induces a dual chart (U, @) of T*M as follows:

U= 7 H(U)

¢(p,ap) = ¢ (p, Zak)‘ﬂp) = (p(p), a1,..., ) €R*"
k=1

Hence a 1-form (which is a dual object on a vector field) on U can be expressed as a = Y, a AF, where the
oy, are smooth functions on U.
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Remark 2.6.4. There exists a pairing between I'(T'M) x I'(T*M) and C°°(M) given by
(X,a) = a(X) e C°(M) suchthat «(X)(p) =apX,
Note that if @ = apA\*, and X = xE%, then a(X) = aga”.

Definition 2.6.5. Given f € C*°(M), define df € T(T*M) by (df)(X) = X(f) € C*(M), the differential

of f. Moreover,
0 v O
a(&w):%A<&w>:%

of @

i 0
ar =@ and 2= Lp ) () = @),

Observe also that

So df = 9f \iis a special case for f = 27 € C°°(M). Then dz/ = 311 A= M, so M =dal.
ox ox

Remark 2.6.6. The differential d has some important properties.

- d is R-linear

- d(fg) = g(df) + f(dg), or equivalently, X,(fg) = Xp(f)g(p) + f(p)(Xpg)
Observe also that we may pull back 1-forms. So given F': M — N with (F.), : T,M — Tr,) N, the dual
map is

(Fo)p)" =F": ;’(p)N = TyM  with  (F7)(ap@p))(Xp) = ap@p) (Fi)pXp) for  ae(T*N)

We can also define F*a as a 1-form on M unambiguously: (Fy), = F*(ap@). The pullback has the
following properties:

F*(dh) =d(ho F)=d(F*h) for h € C*°(M)
F*(ha) = (ho F)(F*a) = (F*h)(F*«) for « e T(T*N), h € C*(N)
In local coordinates z',..., 2" an M and y',...,y* an N, with o = a’dy’, we have that
OF?

F*a = (a; 0 F)d(y' o F) = ay(F(a!,...,2")) da?

OxI
Definition 2.6.7. Let us formally define what it means to be a tensor. A tensor T of type (k,£) is given by

THT,M)=T;M@ - @TyMRT,M - @ T,M

k times £ times
= space of type (k, £)-tensors at p

= space of multilinear maps

Example 2.6.8. For some small examples, consider

To(T,M) =Ty M TH (M) = | | THTM)
peEM
™(T,M)=T,M = bundle of (k, £)-tensors on M
THT,M) =R = a smooth manifold of dimension n + n**

Remark 2.6.9. Suppose that o, € T5(T,M). Then for

Ezigz((ﬁé’zgz 5 %]‘]@ we write  0p((21)ps- -+ (@k)ps (@1)po- - > (2)p)
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A (k,¢)-tensor on M is a smooth map o : M — T**M such that m o 0 = id and 7(p,0,) = p. In local

coordinates (z!,...,2") for M, we write

® ® 9
OxJt OxJe

where the o elements With_ subscripts and superscripts are smooth functions defined on the domain of the
chart. Next, if we let 8*,a* € T(T*M) and Y;, X; € I'(T'M), then

0 =0, ) T @@ da @

(SRR

k
Qo' Q) X;(V1,... . Vi, B, 85 = o' (V1) - aF (Vi) 81 (Xy) - - BY(Xy) € C™(M)

=1 j=1
Definition 2.6.10. Now we will introduce smooth differential forms. Let 0 < k < n. Define
AF (T,, M) = the space of k-forms at p
= the space of k-linear, alternating (totally skew-symmetric) maps
C Ty (Ty M)

An clement in AF(T;M) is given by ay, = T,M x --- x T,M — R, where the product is taken k times. As
before, we may also define the bundle of k-forms on M by

AM(T*M) = | | AM(T; M)
peEM

This is a smooth manifold of dimension n + (Z), with the projection map 7 : A¥(T*M) — M. A k-form «

on M is a smooth map « : M — AF(T*M) — M such that 7o a = idy;. In local coordinates, this map may
be expressed as 4 4
o=y Az Ao Adat

where the coefficients o on the right side are locally defined smooth functions that alternate in ;.

If o', ...,a% € T(T*M), then ol A--- A ¥ is a k-form given by (ol A--- A a¥)(z1,...,2;) = det(a’(z;)),
which is a locally defined smooth function.

Definition 2.6.11. Define the infinite-dimensional space of all k-forms on M to be
QF (M) = D(AR(T* M)
This is a real vector space, as well as a C°°(M)-module. For small k& we have
QY M) =T(T*M) QM) = C>(M)
Definition 2.6.12. There exists a product on forms, called the wedge product, defined by
A QF (M) x QYM) — QFF(M)
The wedge product has the following properties:

caN(Bt+y)=anB+aly
ca A B = (—1)deel@desB) g A o
caAB= (=B Aafor a e QF(M), B € QM)

The ring of all the k-form bundles is given by
QM) = P k(M)
k=0

This is an associative algebra with identity, and so is a C°°(M)-module. In local coordinates,

= Qg dz A A dat

g = B, dzit A A dzit = AN B =iy Bjywjeda™ Ao Ada™ Ada? Ao N dat
- J1Je
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(da) (X1,

Definition 2.6.13. Let F': M — N be smooth, a € Q¥(N). Define the pullback F*a € QF(M) by
(F")p((@1)p, -+ (Th)p) = @pp) (F7)p(@i)ps - - (Fi)p(2k)p)

The pullback has some important properties:

- F* is linear

cFranB) = (Fra) A (F7B)

CIf (21, ..., 2%) and (y!,...,y™) are local coordinates on M and N, respectively, then o = ay,...; dy’* A
oA dyik
The second property states that the pullback is a homomorphism of algebras. Using these local coordinates,

(F*a) = (ail"'ik o F)d(y“ o F) A--- A d(ylk o F)
T i
= (Qiy.iy © F') (6F dle) A A (6F dx]k>

Ox1 OxJk

Definition 2.6.14. Let M be a smooth manifold. There exist unique linear maps d : Q¥ (M) — QFT1(M)
for all k =0,1,...,n, called exterior derivatives, such that

Sif f € QM) = C®(M), then df € Q' (M), where (df)(X) = X f

-d(a A ) = (da) A B+ (—1)%E@a A (dB)

- d? =0, that is, d(da) = 0 for all a € QF(M)
In local coordinates, for o = o, ...;, dz® A -+ A dz'* | we have

= %dmﬂ ANz A - ANdx' = (doy,..q,) Adx™ A - A dat
x

However, there exists a coordinate-free definition of d. It is given by:

do

...,XkJrl): Z (—]_)i_lXi(Oé(Xh...,E,...,X}c+1))+ Z (—1)i+j04([Xi,X]’],X17...,E,...,Xj,...

1<i<k+1 1< <h+1

3 Introduction to Riemannian geometry

3.1 Connections on the tangent bundle

This section may also be titled “affine connections” or “covariant derivatives on the tangent bundle.”

Remark 3.1.1. Recall that if X € I'(T'M) and f € C>®(M), then (X f) € C>*°(M), where (Xf), = X, f,
which is the directional derivative of f at p in the direction X, € T, M.

In particular, X, f = (X f), depends only on the value of f at p. By contrast, if Y € I'(T'M), we defined
LxY € T'(TM), but (LxY), does not depend on the value of X at p, but rather on the values of X in a
neighborhood of p, as LxY = [X,Y]. Hence it does not make sense to call this a directional derivative.

We wil now introduce more structure on M to be able to take directional derivatives of vector fields.

Remark 3.1.2. Consider M = R”™ with its metric space structure. A question one may ask is what are the
nicest (and what defines the nicest?) curves in M?

It is intuitive that a constant speed straight line in R™ is simple (hence nice), with
1) =p+tv  A()=v  (t)=0

These curves are characterized as being with zero acceleration. Now suppose that M is a manifold and
~v:I — M is a smooth curve. What should be the “acceleration” of v at y(to), for to € I?7 As velocity of 7
at to is given by v'(to) € Ty (1,)M, we could naively say that

/ /
" T Y (tO + h) -7 (tO)
) = h

22
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This approach works in R”, as T,R" is canonically isomorphic to R™ for all p, but in general this does
not make sense, as 7/(to + k) and +/(tg) are vectors in different tangent spaces, so subtracting them is not
possible. A canonical isomorphism does not exist in general.

Definition 3.1.3. Let M be a smooth manifold. A connection (or covariant derivative) V on M is a map
V:ITM) xT(TM) - T(TM) with VxY =V(X,Y)
This satisfies the following conditions:
1. linearity over C*°(M) in X, i.e. for all fi, fo € C*°(M) and X1, Xo,Y € I'(TM),
Viaxi+pxY = iV, Y + oV, Y
2. linearity over R in Y, i.e. for all aj,a3 € R and X,Y7,Y, € T'(TM),
Vx(a1Y1: + a2Ys) = a1VxY: +aaVx Yo
3. the Leibniz rule, i.e. for all f € C>°(M) and X, Y € T'(TM),
Vx(fY) = (XY + fUxY

Remark 3.1.4. Connections may be more general, as they can be defined on different spaces, such as vector
bundles. However, it is not yet obvious that such things exist. They do indeed exist (as proved later), and
there is even a preferred connection, called the Levi-Civita connection.

Lemma 3.1.5. Let V be a connection on the tangent bundle on M. If X, e I'(T M), then (VxY), only
depends on values of X and Y in a neighborhood of p. That is, it is a local operator.

Proof: Suppose X = X on a neighborhood U of p. Then X — X = 0 on U. To show (VxY), = (V5Y)y,
we can show that (Vy_ Y), = 0 by the second condition of the definition above. It is enough to show if
X =0on U, then (VxY), = 0. Let ¢ be a smooth bump function such that ¢ = 1 at p and supp(p) = U.
Then, as X =0=0- X, we have

(,O(ny) = VLPXY = vo.chY =0- Vg,XY =0

We evaluate this at p to get ©(p)(VxY), = 0p, s0 (VxY), = 0. Similarly, if Y = ¥ on U, then (VxY), =
(VxY), = 0, which occurs if and only if (Vx(Y —Y)), = 0. It is now enough to show that if ¥ = 0 on U,
then (VxY'), = 0. It remains to show that if ¥ = 0 on U, then (VxY), = 0.

To do this, we use the same ¢, recalling that Y = 0 everywhere, and that Y = 0-¢Y. Then:
0=0-Vx(pY) = Vx(0-pY) = Vx(¢¥) = (XQ)Y +¢VxY = (X9),¥, +¢(p)(VxY), = (Vx¥),

This proves the desired claim, and proves the lemma. |

Lemma 3.1.6. (VxY), depends only on X at p.

Proof: Let X, = Xp. We would like to show that (VxY), = (V 3Y),. By the properties of V, it is enough to

show that (VxY'), = 0if X, = 0. By the previous lemma, we may mork in local coordinates, so X = at a?ci

for a; local smooth functions, and a’(p) = 0 for all i. Then

T = (T ¥), = K (07 ), =S (7,27), =0

The second equality follows from linearity over C'*°(M). |

Although this helps, we still have not seen that VxY is actually a derivative.
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Example 3.1.7. Let M = R"”. On R"™, there exists a global frame, which is a set of n smooth vector
fields that are everywhere linearly independent. We have that eq,...,e, € T'(TR"™) is a global frame, where
TR™ = R™ x R™.

Z1

e1(p)
p e3(p)
T3
e2(p)

T2
Here, ¢;(p) = (p,e;), which is the ith standard basis vector of R™. That is, e;
identity chart. We now define a connection V on R"™ as follows:

- Any X € T(TR") can be written as X = X'e; = X' 2;
- Let Y = Y7e¢,, and define

= % with (z!,...,2") the

VxY = Vx(Y¥*e,) = X(Y*)e, € D(TR™)
We now must check that this actually defines a connection.

(fiX1 + faX2)(h) = fi(X1h) + f2(X2h)
X (ch) = ¢(Xh)

The above holds for all f1, fo € C°(R™) and all ¢ € R, so VxY is linear in X over C*°(M) and linear in Y’
over R.Now let f € C*®(R"), so fY = (fY*)ex. Then

Vx(fY) = X(fY")er = (X /)Y Per + f(XYF)er, = (X )Y + fVxY

So all three necessary conditions are satisfied, so V is indeed a connection on R™, and is termed the Fuclidean
connection.

Remark 3.1.8. The above construction works whenever we have a global frame for our manifold. Such a
manifold is termed parallelizable.

Remark 3.1.9. Let us consider what connections look like locally. Let U C M be an open subset on
which we have a local frame for M. That is, Ey,...,E, € T'(TU). So each E; : U — TU is a map with
Ei(p) e T,U =T,M.

If (z1,...,2™) are local coordinates, then {%, ce, %} is a local frame, called a coordinate frame. However,

not all coordinate frames are local frames.

Remark 3.1.10. Let V be a connection on M, with X,Y € I'(TU) such that X = X‘F; and Y = Y/ E},
where X, Y7 € C°°(U) for all 4,j. Then VxV is a vector field on U, which we may expand in terms of Ej:

VxY = (VxY) By = Vxip (YIE;)) = X'Vg,(YE;) = XY(E;(Y)E))4+Y Vg, E; = X(Y))E;+X'YIVg, E,
N—_——

functions

And Vg, E; = Fijk, where the Fi—“j are smooth functions on U (there are n® such functions). They are the
Christoffel symbols of V with respect to this local frame {F, ..., E,}, and are not components of a tensor.

Remark 3.1.11. Note that for the Euclidean connection in R™ in the standard global frame, Ffj =0 for all
i, 7, k. However, in anoher local frame, The Christoffel symbols of the Euclidean connection need not vanish.
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Consider M = R? and V the Euclidean connection. Then

o 0 o 0 0
=55 =9 77 Iisthelocalf — =0 foralli,j
{5‘11’ 8302} {c’)x’ 8y} is the local frame Vaij p 0 forall 7,7

Now we choose another local frame, namely the polar coordinates. This gives

x =rcos(d) r =22+ y?

y = rsin(6) 6 = arctan(y/x)
Therefore {2, 2} is a frame on R\ {z = 0}. Then we have that

2—@g+@g——rsin(0)ﬁ+rcos(9)£—xg— 9_9
00  000x 000y ox dy oy Yor ~ 99
0 O0z0 Odyod xd yo 0

o Orox Ordy rox rdy or

Next we consider the covariant derivative of the same field.

g ., 0 5 0
Vo = lmgg T g,
B z 0 y o
o V%%+%% (r Ox + r(“)y)
_ B(M y3)+y @>
oz \rdx rdy r

Hence

2 _ 2
v 3] x(ya xy8>+2< xy8+x 8)20

For r\rPdr oy r3 dx | r2dy

This is not surprising, as the length and the direction of % do not change as we move in the % direction.

However, % should not be zero, because the direction of % changes as we move in the % direction. Let us
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make sure of this:

0 0 0
erar—viaimi( ay—yax>
o 0 Y 0
—VE <xay - yaz> eV (Wa ) yax)
_x [0 y 0
-t %)
_1(,9_, 9
o\ oy Yor
_10
o0
0 0
_ 0
FTH 89+Fr08
1/r 0

A \ % = (_va)

TT\\H = - v -

\
Next consider the vector field for which %% = —(%, 7) has constant length and does not change as we move
in the % direction. We may check this by noting that

v, (19 Qlﬁﬁv o _ 19 110N _
= \ro0)  orroo 00 1200 1 \rob

Proposition 3.1.12. Any smooth manifold has connections.

Proof: Cover M by coordinate charts {(Uy, ¢o)}. On each U,, define a connection V< by setting

Let {fa} be a partition of unity subordinate to this open cover. Define a map

V:D(TM)xT(TM) - T(TM) by VxV =) fa(V%)eT(TM)

To show that this is a connection, we need it to satisfy the three properties:

Vi XothaXsY = 3 fa (Vi xoinex,Y) = D fo (V%Y +h2V,) = Vx, Y + hoVx,Y

Vx (1Yo +02Y2) = Y fo (Vi (Y1 + 2Y2)) = Y fa (1 VEYL + 0 VxY2) = a1 Va Y + Vi Ys

Vx(hY) =3 fuVE(hY) = Z fa (XR)Y + RVLY) = (Z fa> Y +h (Z fa ) (Xh)Y +hVxY
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This is the desired result. |

Note that the created connection is highly non-unique, and indeed, there are uncountably many connec-
tions on every manifold. So the natural question arises, what is (and is there) a best connection on TM? The
answer depends on the context, on the manifold M. We will later see that for M a Riemannian manifold,
there exists a natural connection, the Levi-Civita connection on X.

So far, we have shown that all manifolds have connections, but we still need to show that a connection
is a differential derivative. So now we will show that for V a connection on T'M, here is an induced notion
of covariant differentiation on any tensor bundles T, (T'M).

Definition 3.1.13. Let a € I(T*M) = Q}(M) and X,Y € I'(TM). Define Vxa to be the smooth 1-form
satisfying
X(a(Y)) = (Vxa)(Y) = a(VxY) = Vya=X(a(Y)) - a(VxY)

Further, given {E1,...,E,} a local form on M with E; € T'(TU), let {E',..., E"} be the dual coform for
M, so E* € Q'(U), and E'E; = 6}. Then

Ve, E; =ThE, = VgE'=CLE
This commes from the co-nature of the objects.
Proposition 3.1.14. For values as described above, ij = —I‘fj.
Proof: Merely note that
(Ve,E") (E) = CLETE, = C
(VE,E®) (E¢) = E;(E*(E,) — E*(Vg,Ey)) =0 — EFT,E;) = -T%,
|

Remark 3.1.15. Let us generalize the previous definition. Let o € I'(TFM) be a smooth (k, £)-tensor with
X, Y1,...,Y, €D(TM) and o, ... ,a" € QY(M). Let Vxo € T(TFM) be the (k, £)-tensor defined by

X(o(Y1,..., Yol ...,a%) = (Vxo)(Y1,... Y, o, ... ab)
+ ZU(Yl,...,VXYi,...,Yk,ozl,...,a[)

+ ZJ(Yl,...,Yk,al,...7VXaj,...,o/)
J

Let v : I — M be a smooth curve on M, and let V be a conection on M. Now we may define the
“acceleration” of v, which is the covariant derivative of the velocity 4/(¢) in the direction of ~/(¢).

Definition 3.1.16. Let V € I'(T'M). Then the derivative of V' along the curve v is V.V, which is the
covariant derivative of V' in the direction of the tangent vector v/(t) € T')M at y(t) € M.
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Notice that 4/(t) is not a vector field for all of M. We get a tangent vector in T’ ;M for all ¢ € I, only on
the points of M that lie in the image on V.

Let v : I — M be a smooth curve on M. Define v*(T'M) be the bundle of tangent spaces to M, over
points on the image of ¢. Then we have the following commutative diagram:

« (TM) TM

(M) = | |TywM
7T'7*(TM) TTM tel
W(t,Xv(t)) =t
1 M

Definition 3.1.17. Define I'(v*(T'M)) to be the space of vector fields on M along v. That is, V €
[(v*(TM)) is a smooth map V' : I — v*(T'M) such that 7oV =1id; for V; € T p)M.

Lemma 3.1.18. Let v: I — M be a curve on M. Then there exists a map D, : T(v*(TM)) — T'(v*(TM))
called the covariant derivative of vector fields such that

a. Di(aV +bW) =aD;V +bDW

b. Di(fV) =%V + fD,V

c. If V is a restriction of y of a vector field V' € I'(T'M), then (D;V)(t) = (Vy»)V) € TyiyM
The above holds for any a,b € R, VW € I'(v*(TM)) and f € C(M).

Proof: In local coordinates, we have V = Vk(t) By part b., we have that

i|
Ok Iy(t)"

D) (t0) = (0 (V5% ) ) (o

B ddlltk % ¥(to) ! <Vk (Dt@i’“» o

- d;/: (921‘”' o +V’“(to)Vdmz( o) 22 m)dxk

- ddi‘:c(to) % » + V’“(to)dg (toW@ng(to)aik

= L‘j(%) % A (t0) +Vk(t0)ddti (to)T k(3 (fo)) 32’” A(to)

From this we conclude that if such a map D; exists, then it would not be unique. Above we only showed
that (V:V')(to) has to be this vector field. To prove existence, in any coordinate chart define D; by

k i
D) = (G 4 THOO V) o

This is a smooth vector field along -y, Moreover, on overlapping charts, the definitions agree, because we
already proved uniqueness. |

3.2 Geodesics and parallel transports

Definition 3.2.1. Let (M, V) be a manifold with a connection on its tangent bundle. Let v: I — M be a
smooth curve. The acceleration of v at v(tg) is defined to be

(Dey")(to) = Vo) = (V') (to) € Ty M
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A curve 7 is called a geodesic if its acceleration is zero for all t € [.

Example 3.2.2. In R" with the Euclidean connection, the geodesics are constant speed parametrized
straight lines.

Theorem 3.2.3. Let (M, V) be a manifold with a connection, and p € M, X,, € T, M. Then there exists
an open interval (—e,e) C R and a smooth curve v : (—€,€) — M such that v(0) = p and 7/(0) = X,. In
other words, ~ is a geodesic.

That is, given an initial point and an initial velocity, there exists a unique geodesic with those initial
conditions, at least for a small time interval.

Proof: In local coordinates, recall that if V € T'(y*(TM)), then

dvk dzt . 0
D, V)= |Z— +T% VI
(D:V) ( dt " dt >6mk

Let V =+, the velocity vector field of 4. Then V = dr' 0 and Vi= 9 and we get

“dt 9zt dt
d?xk dz' dz?\ 0
Dy = Fk s

If v is a geodesic, then in coordinates y(t) = (z'(t),...,2"(t)) has to satisfy the geodesic equations:

A2k ~ k1
— T > TH@E®),. .., 2" (1)

ij=1

So (z!(t),...,2"(t)) satisfy a system of non-linear 2nd order ODEs. If 7(0) = p, then we have conditions on

z1(0) for all 4, and if 4/(0) = X,, then we have conditions on % (0) for all i as well. By the ODE theorem,

there exists a unique solution at least for ¢ € (—¢,€). |

Note that to change a 2nd order ODE to a 1st order ODE, define 3 (t) = dd—””;, so the system becomes dditk =

y*, and % = —I‘fj (1 (t),...,2"(t))y'(t)y’ (t), which is a Ist order system for (x!(¢),...,2"(t), ¥ (t),...,y"(t)).
Remark 3.2.4. Any two geodesics, by uniqueness, agree on their common domain. Hence, given (p, X,) €
T, M, there exists a unique minimal geodesic v : I — M with 0 € I such that v(0) = p and v/'(p) = X,.

Definition 3.2.5. Let (M, V) be a manifold with a connection. Let V,, € T,M, and v : [0,1] = M be a

smooth curve such that v(0) = p. A vector field V along v (so V € T'(y*(T'M))) is called a parallel transport
of V, € T, M along v iff:

V(0) =V, € ToyoyM and (DV)(t)=0 YVt
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Proposition 3.2.6. There exists a parallel transport, and given V,, and v, it is unique.

Proof: We want to have

DV = (V +Ffj(7(t))dm Vf) 2 _y

dt dt dxk
for V = f/k%. The curve v is fixed, and the unknowns are V*(t) for i = 1,...,n. We then need
vk da’

=—T5('(t),....2a"(t)—-VI

dt dt

for all k = 1,...,n, where 2* = ~(t)". This is a system of first order linear ODEs, so by the ODE theorem,
the solution exists for all ¢ € R, given V(0) = V,. Hence there exists a unique solution to the parallel
transport equations for all ¢ € [0,1]. [ |

Definition 3.2.7. For structures V,, € T,M, v : [0,1] — M with p = «(0) as above, define the parallel
transport of V,, along 7 to be a map IL, : T, M — T, M with

IL,(V,) = V(1) € T,;yM = T,M

Remark 3.2.8. Let V be the Euclidean connection on R”, so Ffj = 0 in the standard chart. The parallel

transport equations then will be % = 0, with solutions V*(t) = V¥(0) = v(0)* for all ¢ and for any v. So

we say that a vector field V' is parallel along a curve v if D;V = 0. More generally, any tensor o on M is
called parallel if Vx,o = 0 for all (p, X)) € TM.

Theorem 3.2.9. For any v, IL, : T, o)M — T.1)M is a linear isomorphism of vector spaces.

Proof: Let U,, W,, € T,M with v(0) = p. Let U, W be parallel transports of U, and W), respectively, along
v. Let V, = aU, + bW,. We claim that aU + bW is the parallel transport of V along ~. This follows as

(aU + bW)(0) = alU(0) + bW (0) = al, + bW, =V,

Next, note that ~ ~ ~ ~
Dy(aU + bW) = aD:U +bD:W =04+0=10

So aU + bW is V, the unique parallel transport of V), along 7. So
IL,(V,) = V(1) = aU(1) + bW (1) = aIl,(U,) + bIL, (W,)

Therefore IL, is linear. Next, consider the curve n, given by

M
We call n = v~!. By uniqueness, wal(V(l)) = V(0) = V), as parallel transports are unique. Hence
(IL,)~* =1II,-1, so IL, is an invertible linear map, i.e. an isomorphism. |

Now we may use the parallel transport to show that the covariant derivative is really a directional
derivative (that is, a limit of difference quotients), so (VxY'), depends only on X,.
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Proposition 3.2.10. Let v be a curve on M and V a vector field along . Then

N (V (1) — V(to)
t—to

(Dt V)fy(to) = }im

—0

= (Vo (o) V) t0)

The proposition says that covariant diferentiation is a directional derivative.

Proof:
It now follows that (VxY’), only depends on X,,. To compute it, choose any curve y such that v(0) = p
and 7/(0) = X,,. Let P, be the parallel transport of X, alonf v from p to v(t), so

Ptil(YLy(t)) -Y
t

(VXp Y) = lim

t—0

However, parallel transport along a closed loop may fail to bring you back to the same vector. This is called
the holonomy if the connection. We will see that holonomy depends on the curvature.

Definition 3.2.11. Let V be a connection on T'M. Define the torsion of V to be the function
T:T(TM)xT(TM) —T(TM) given by T(X,Y)=VxY -VyX - [X,Y]=-T(Y,X).

On the previous assignment we showed that T(fX,Y) =T(X, fY) = fT(X,Y) for all f € C>(M), so T is
a (2,1)-tensor on M.

Example 3.2.12. Let M = R" and V be the Euclidean connection. The set {E1,...,E,} is called the
standard global frame if any Y € T'(TR™) can be expressed as Y = Y'E;, where the Y's are global smooth
functions on R™. Further, we then have that VxVY = (VxY)'E;, where (VxY)! = XY, which only holds
because we have the Euclidean connection in the specified frame.

Remark 3.2.13. What does the torsion measure? By comparing paths along different geodesics, we find
that when T' = 0, then the order of geodesic paths taken does not matter, i.e. the result will be the same.

3.3 Riemannian metrics

Definition 3.3.1. A Riemannian metric g on a smooth manifold M is a smooth (2,0) tensor field with

1. ¢(X,Y) =gV, X) for all X, Y e T'(TM)
2. g(X,Y) > 0, with equality iff X =0
This describes g as a symmetric, positive-definite tensor.

Remark 3.3.2. So g € T(T¢M). Given X,Y € I(TM), g(X,Y) € C®(M), and (¢(X,Y))p = gp(Xp, Yp).
This shows that g, gives a positive definite inner product on T,M. In general, a Riemannian metric is a
smoothly varying family of positive definite inner products on the tangent space of M. That is, if (x!,...,z")
are local coordinates, then g = gijdﬂci ® dx’, where the gij are smooth functions on the domain U of the
coordinate chart, with

. . 7 o

g = gida'|, ®dal], Voo =V a7, VW
- 5Py and % = 9p(Vp, W) = 9i;(0)V* (P) W (p)

9ii = 9(za>37) Wp —W(Jp)W|p nmr ’

Definition 3.3.3. A pseudo-Riemannian metric g is a (2,0) tensor such condition 2. in the definition of
Riemannian metric is replaced by the non-degeneracy condition:

2. if g(X,Y)=0forall X,Y e I'(TM), then X =0
Note that positive-definiteness implies non-degeneracy.

In particular, we may say that g is pseudo-Riemannian with index (1,7 — 1), equivalently 1 time-like dimen-
sion, and (n — 1) space-like dimensions. This is a generalization of the Lorenztian metric, which always has
only one time-like dimension.
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Remark 3.3.4. A metric in local coordinates looks like

, , o 0
g= gijd.'l;z X dl‘j fOI‘ g” = <ax7f’ 5‘;5J) = g]’L

where the g;; are smooth functions on the domain U of the chart. That is, [g;;] is an n X n positive-definite
symmetric matrix of smooth functions.

Definition 3.3.5. Let a, 3 € Q'(M). Then as a shorthand, we write

a®R b+
2

This is a (2,0) tensor, with the property that (a8)(X,Y) = (af)(Y, X) = (Ba)(X,Y). The expression af is
called the symmetric product of o and 5. The skew-symmetric product is given by

aff =

aANf=a® - R«
For a metric g, it then follows that
1 i c1 , .
= igl-jdx ® dx? + ggjidacj ® dx
1 ; 1 ; .
= ggijdx ® dx? + igijdx ® da?
= gijdxidxj

Example 3.3.6. Consider R"™ with the standard Euclidean metric g. Then g = gijdazidacj with g;; = d;; (in
the standard coordinate chart). That is,

.= v o) = o i)
xt —
— wj 9 - Ulw,g(awi’azj)
oxd — in]gij

For g on R", g(v,w) = Y1, v'w’ = (¥,w) = ¥ - W, which is the usual dot product on R". However, as soon
as we change the coordinate system, g will have a different expression in local coordinates. In rectangular
coordinates:

g = (dz)* + (dy)?

In polar coordinates:

x = rcos(f) dx = cos(0)dr — rsin(0)df (dz)? = cos?(0)(dr)? + (r?sin?(0))(d)? — 2r sin(#) cos(8)drdh
y = rsin(0) dy = sin(@)dr + r cos(0)do (dy)? = sin?(0)(dr)? + (1% cos(0))(d6)? + 2r sin(8) cos()drdo

So g = (dz)* + (dy)? = (dr)? + r*(df)?, and

(0 0\, (0 DY (00,

INoror) = I\o6°00) ~ I\or o) ~
Definition 3.3.7. Let M", L* be smooth manifolds. A smooth map i : L¥ — M™ is called an injective
immersion if the following conditions are satisfied:

1. i is injective (that is, p # ¢ = i(p) # i(q))
2. 4 is an immersion (that is, (i), : T, L — T M is injective for all p € M)
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If i is an immersion, we may use (i.), to identify each T, L with a subspace of Tj,) M.

5 Nmp(m) M
T,L

If i : L — M is an injective immersion, then (L, 1) is called an immersed submanifold on M.

Remark 3.3.8. Note that

- this often occurs when L C M is a subset which is also a smooth manifold, and 7 is the inclusion

- the requirement of injectivity is sometimes dropped

- there exists a stronger notion, that of embedded manifold, even as any immersed manifold is locally
embedded

Lemma 3.3.9. Let i : L — M be an immersed submanifold, and let gp; be a Riemannian metric on M.
Then i*(gps) is a Riemannian metric on L. This metric is called the induced or pullback metric on L from
M.

Proof: Note that i*(ga) is a smooth (2,0) tensor on L (by the properties of the pullback), with
(@ (980))p (Yo, Zp) = (gan)ip) ((0)p(Yp), (0)p(Zp)) = (07 901)p(Zp, Yp)
Further, if (i*gar)p(Xp, Xp) = 0, then
(901)i(p) () p X, (i4)p Xp) = 0 = (i4)p(Xp) =0 = X, =0

The first implication is from the positive definiteness of gp;, and the second is from the fact that i is an
immersion. This concludes the proof. ]

Example 3.3.10. Consider the n-sphere S™. There exists a map 4 : S* — R**! the inclusion map, such
that ¢ is smooth, injective, and an immersion. Hence i*(g) is a Riemannian metric on S”, called the round
metric. This metric looks differently in different charts.

Example 3.3.11. If p € Uﬁ“ = {p e S"* : 2"*t(p) > 0}, then we have graph coordinates z',..., 2"

and z"*1 = /1 — (21)2 — ... — (2")2. In these coordinates,
" -
1 0
. 1
i {(ut,. ) eR YT (uh)2 < 1} - U . 1
(ul,“.’un)‘_> (u17...7un)\/1_(u1)2_”__(un)2) (7/*)(u1 ,,,,, un) = ;
1
ERE T
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As this matrix is rank n, the map is injective. Let us write down the round metric in these coordinates:

g=(dz")*+-- + (dz"*1)?* on R"M! zi(ul,. . u) =ut fori=1,...,n
Ground = 1"(7) xn+1(u17 cut) = \/1 —(uh)? == (un)?
= (d(z' 09))* + - + (d(2" 01))? de' =du’ fori=1,....n
-1
de" ™t = —————— (2u'du + - 20" du"
2y/1— Z(ui)2< )

So the metric may be expressed in local coordinates as

Ground = (du®)? 4+ - + (du™)? + e (urdut + -+ u"du™) for |ul®> = ;(Ui)2
1—ful + (uh)? 10 1— |uf® + (u")? 2 2 i
_ d du™ "u? du' du?
TP (du*)* 4+ -+ e (du™)* 4+ Z 17|u|2uu u'du
ivj=1
i 7]
) 1— |ul? + (u')? uiul
R I JuP? TP
It is left as an exercise to check that in spherical coordinates,
x = rcos(f) sin(p) g = (dz)* + (dy)? + (dz)*
y = rsin(6) sin(p) = dr? + r?sin® () (df)? + 12(dp)?

z =rcos(f) Jround = 1°(7)
= sin? () (d8)? + (dyp)?

So we see that a Riemannian metric gives you a measure of how much a manifold is curving.

Definition 3.3.12. Let (M, gnr), (N,gn) be Riemannian manifolds. A map f : M — N is called an
isometry if it is a diffeomorphism and f*(gn) = gum-

Two Riemannian manifolds are termed isometric if there exists an isometry between them.

Further, M is locally isometric to N if for all p € M, there exists U > p open with a map g : U — N
such that g(U) = V open, and g : U — V is an isometry. Here, the metric on U is gu|, = i*(gn), where
i: U — M is the inclusion.

Note that if (M, gps) is locally isometric to (N, gy ), it does not necessarily follow that (N, gn) is locally
isometric on (M, gar).

Definition 3.3.13. Let (M, gnr), (N, gn) be Riemannian manifolds. A smooth map f: M — N is called a
local isometry if for all p € M, there exists U > p open such that f(U) is open in N, and f|, : U — f(U) is
an isometry.

Definition 3.3.14. Let (M, ga) be a Riemannian manifold. Then (M, gar) is called flat if it is locally
isometric to (R™, g). That is, for all p € M there exists U 3 p open and a map f : U — f(U) for f(U) open
in R™ such that f*(gl ;) = 9ly-

Proposition 3.3.15. Any smooth manifold M admits a Riemannian metric.

Proof: Cover M by coordinate charts (Uy, pq) for a € A. Define a Riemannian metric go,on U, by
o = Oijda’da’ = (©a)* (o, w.))
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Let {fa : a € A} be a partition of unity subordinate to this open cover. Define g = 3" faga, which
is a finite sum for all p € M. Then g is a smooth (2,0) symmetric tensor. It remains to check positive
definiteness, so suppose that g(X, X) = 0. Then

0=gp(X;, X,) = Z fa(P)ga(Xp, Xp) as 0< fo <1 and at least one fo,(p) >0
acA
This implies that X, = 0. Since g,, is positive definite, g is positive definite. |

Note that this will not work for pseudo-Riemannian metrics. For example, not every manifold admits a
Lorentzian metric, as there exist topological obstructions.

Remark 3.3.16. For covariant derivatives V, we have that

Vxf=Xf and VX(a®ﬁ):(VXa)®B+a®(VXB)

3.4 Elementary constructions with Riemannian metrics

Proposition 3.4.1. Let (M, g) be a Riemannian manifold. There exists a canonical isomorphism between
tangent vectors at p € M and cotangent vectors at p. This is termed the musical isomorphism, and given

- V finite dimensional real vector space, V* its dual, and
- B:V xV — R a non-degenerate bilinear form (i.e. B(v,w) = 0 for all w implies v = 0),

define b : V' — V* by setting b(v) € V* to be the linear functional such that (b(v))(w) = B(v,w). This is
the proposed isomorphism.

Proof: Suppose v € ker(b), so b(v) = Oy«. Then (b(v))(w) = B(v,w) = 0 for all w € V, meaning that v = 0.
Hence ker(b) = {0}. Since dim(V') = dim(V*), b is an isomorphism. |

Remark 3.4.2. Apply this approach to the tangent space of M at p with a non-degenerate bilinear form
gp. Given X, € T,M, we let X} =b(X,) € Ty M with

.0
= akdmk| <Yj — ) = a,Y 6k = a,YF
p) ( T’) oI » J

for X} = agda®|,. Further, for all Y, € T,M, we have that X}(Y,) = gp(X,,Y,) = X7Y'gi(p) = Y'ai.

Hence a; = g;;(p)X7. If X = X' ;2 , € T,M, then X = Xyda¥|, € T;M for X, = gi;(p)X7. More

0
ozt

Y —
j
» Ox

X;(Yp) = 9p(Xp, Yp) = 9p <Xi

generally,

b : T(TM) — T(T* M)
GX))Y) =g(X,Y) € C=(M)

So (b), : T,M = TyM, so it has an inverse (#), : TyM — T,M. If a € T'(T*M), in local coordinates
a = aidz®, and o € T(TM).

So we conclude that given g on M, we get a positive-definite inner product g, on the space Ty M, varying
smoothly for all p. It is defined by

9p(ap, Bp) = gp(afaﬁf)
This follows by demanding that b, be an isometry of inner product spaces.

Definition 3.4.3. Let (M, g) be a Riemannian manifold and f € C°°(M). Define the gradient V f of f to
be the smooth vector field on M given by

_ap# = (9 z')#_(i'af)a
vi=d) <(‘3$idx N gj@a:i Ox’
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where the first factor in the last expression on the right is the component of Vf in the % direction. Note

that V£ is the vector field canonically associated to df € Q(M).
Example 3.4.4. Consider the metric in the following situations.
- in R? with polar coordinates. We can use our previous knowledge to describe g = dr? + r2d62.

gr=1 gr6=0 Vf*afg 10f 0

gor =0 gop =12 “oror 20000

-in S? with the round metric and polar coordinates. Here we have g = dy? + sin?(¢)d6>.

Jop =1 gpo =1 _ofo 1 9fo
.2 Vf= + -
gop =1 ggg = sin”(yp) Op Op  sin?(p) 00 00
Definition 3.4.5. Let (M, g) and (N, h) be two Riemannian manifolds, and f : M — N a map. Consider
the following definitions:

1. f is a conformal diffeomorphism with respect to g, h iff f is a diffeomorphism and f is conformal, i.e.
f*(h) = Ag for some positive function A on M. If A = 1, then f is an isometry.

2. fis a local conformal diffeomorphism iff for all p € M there exists U C M open with U > p such that
f(U)=Visopenin N, and f|, : U — V is a conformal diffecomorphism.

3. f is locally conformal to N iff for all p € M, there exists U C M open with U > p and a map
f:U — N such that f(U) =V isopenin N and Pf : U — V is a conformal diffeomorphism.

Note that if f : M — N is a conformal diffeomorphism, then the angle between X, and Y, with respect
to g, is the same as the angle between (f.),(Xp) and (f.),(Yy) in Ty M, with respect to hyq,. Also,
1. = 2. = 3.

Remark 3.4.6. There are several important examples of geometric spaces.

(R™, g), Euclidean space zero curvature
(S™, ground), the round n-sphere constant positive curvature
(H™, ghyp), n-dimensional hyperbolic space constant negative curvature

We have seen the first two so far. There are two models of hyperbolic geometry. For the first, we define an
open ball of radius 1 with respect to g.

M = {(ul,...,u”) eR" : zn:(ui)2 < 1}
i=1

o0 = g (4 @)

In local coordinates, g;; = 0 when ¢ # j, and g;; = 4/(1 — \u|§)2 when ¢ = j. This is called the ball model
of hyperbolic space. It is clear that (M, gar) is conformally diffeomorphic to (M, g|,,) by the identity map.
Forthe second madel, we consider half of a whole space.

N = {(ml,...,wnfl,y) eR" ! xR : y>0}

— () -+ (d Y2 + (dy)?)

gN
Y2

This is called the upper half space model of hyperbolic space. Again, (N, gy) is conformally diffeomorphic
to (N, g| ). Note that M and N are not isometric to subsets of Euclidean space with the Euclidean metric.

Proposition 3.4.7. The spaces (M, gp) and (N, gn) are isometric.
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Proof: Express the spaces as M = {(u,v) € R* ' xR : |u]24+v®> <1} and N = {(z,y) e R""' xR : y > 0}.
Define a map between them by

f: M — N

(u ’U) — 2u 1—|ul?—o? _ (.’E )
: WP+ (o=1?" uP+(o=1) Y-

This map is smooth and maps into N. To show that f is invertible and ha an inverse, note that

_ 2x lz|? + 942 -1 ) 4z|? + (Jz| + y* — 1)2
1 2
x,y) = , and v+ |ul” = < 1.
e = (GF T B T S (T E RSO
It remains to check the above and that f*(gn) = gas, which implies that f is an isometry. [ ]

3.5 The Riemannian connection / the Levi-Civita connection

For (M, g) a Riemannian manifold, we will see that g determines a unique connection V on the tangent
bundle.

Definition 3.5.1. A connection V on TM of a Riemannian manifold (M, g) is compatible with the metric
gif Vxg=0forall X e T(TM).

Remark 3.5.2. What does compatible mean? First, recall that for all X, Y, Z € T'(TM) and all g € T(T§ M),
(Vxg)(Y, Z2) = X(9(Y, 2)) —9(VxY, Z) = g(Y,Vx Z)
So V compatible is equivalent to g being parallel with respect to V.

Proposition 3.5.3. Let V be a connection on a Riemannian manifold (M, g). Then equivalently:

1. V is compatible with g

2. Vxg=0foral X e T(TM)

XY, 2)=9(VxY,Z)—g(Y,VxZ) for all XY, Z € T(TM)

4. the parallel transport Il ¢, : Ty )M — Ty,)M is an isometry for all £, %1 and curves

95

This is natural from the Euclidean connection g. Let X = X'¢;, Y = YJe; and Z = zFey, with {e1,...,e,}
a globas frame and g(e;, ;) = 6;;. In the system (R", g, V"), we have that

X(9(Y,2)=9(VxY,Z) - g(Y,VxZ)
so in R™ compatibility comes naturally.

Remark 3.5.4. Recall from Assignment 3 that a g-compatible connection V means the parallel transport
with respect to V preserves the inner product defined by g between tangent vectors. That is, if v is a curve
from p to ¢, then

9p(Xp, Yp) = g4 (11, X, 11, Y3)

However, if Vxg = 0 for all X, it does not follow that the component functions g;; of g with respect to a
chart are constants. In fact,

8 m m
(Vxg)ij = ki~ Iiigms — L'k gim

Definition 3.5.5. A connection V on T'M is torsion-free if T(X,Y) =0forall X, Y e I'(TM) for T(X,Y) =
VxY -VyX - [X,Y].

Recall that the Euclidean connection on R"” is torsion-free.
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Theorem 3.5.6. [FUNDAMENTAL THEOREM OF RIEMANNIAN GEOMETRY]
Let (M, g) be a Riemannian manifold. There exists a unique connection V that is g-compatible and torsion-
free, called the Riemannian connection, or Levi-Civita connection.

Proof: Uniqueness comes from the fact that g(VxY, Z) being determined for all X, Y, Z means that VxY is
determined for all X,Y.

For existence, we use a formula to define V;. To see that V is a torsion-free g-compatible connection,
consider in local coordinates
0 0 0

. 0 0 o, o 0
o ¥ = g 7 ggr Tor W axigﬂ‘”aﬂgik‘wgw—QQ(Vz‘aﬂ’w)

From calculations, we conclude that

km
_ 1l sm _ e m _ 9 9gjk | Ogi  0gi; \ _
Fij =T = Tygng™ = =5 ( e 0w owh) 1Y
We define a connection on T'M by demanding that its Christoffel symbols are given by the equation above
in local coordinates. It remains to show that this connection is torsion-free and g-compatible.

X =

For torsion-free, note that TZ; = Ffj — Ffj = 0. For compatibility, we need to check that (Vg);; = 0 for all
m, 1, j, which we leave as an exercise. |

From now on, (M, g) is always a Riemannian manifold and V is always the Levi-Civita connection of g.
A geodesic with respect to the Levi-Civita connection is called a Riemannian geodesic.

Proposition 3.5.7. Let v be a Riemannian geodesic. The speed s(t) = /g(7'(t),~'(t)) of v : I — M is
constant for all ¢t € I.

Proof: Observe that

d d
@82(0 = %9(7’,7’) =Di(9(v',7) = Vo (g, 7) =9 (Vyy',7) +9(7, V) =0+0=0

Let’s compute this in an example.

Example 3.5.8. Consider (R", §), where the geodesics are constant-speed straight lines. So y(t) = (y1(t),...,y"(t))
is a local frame with

dz’ d [(dv' dy d?~*
t=""e and V,v =Dy =— ( ) e+ — Dye; = o

45" — 0 for all 4, and

Next, we want V.7 = 0 so then
Y (t) = a;t + b; y(t)=at+b

Example 3.5.9. Now consider (S™, ground). The geodesics on S™ are the arcs of great circles, i.e. intersections
with S™ of n-dimensional vector subspaces of R?t1.

Sn
“  ——— n-dimensional subspace

geodesic
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Example 3.5.10. Next, consider (H?,g) the hyperbohc 2-space with the upper half-space model SO
H? = {z,y € R? : y >0} and g = y%(( z)? + (dy)?). The Christoffel symbols are given by I'}; =
x?

. 0ge; o
%g“ (—%i’; + 6%’ — a‘(;”) where z! = z and

= y. So specifically,
1w (990 | Ogn  Ogu 2 (90011 9gu\ _
ox! Ozt Ozt 4 Ox dx

1 1
2 2
1 9901 | 09 Ogu 1 9911 -2 -2 1
2 — —g2 _ — 2.2 _ =0 =
1= 59 (8951 + Ozt Ozt 2Y Oy 2y oy
1 1
2 2

1
Fll_

0ge1  Ogea  Og12 9g11 y? =2 -1
Fl —_ 1¢ . _ 2 _Yy e _ 2
12 g (8952 + oxt Ozt 4 Ay 2 gy y
2, =0
I3 =0
1
I3, =-
2=y
Recall the geodesic equation in general, which was d;f;k + Ffj ddxt d;; = 0. Then
d? 2dzd d? 1 dz\ 2 d
o 2dedy @y 1[Ny
dt?  y dt dt a2y dt dt

Now let’s try to solve these equations. Suppose that x = zy a constant. Then % =0 and d;—f = 0. Also,

1 y// y/
" N2

_ = =0 — = ==L -
Yy y (y ) Y y Yy = &
)) and y(t) = Asin(f(t)) for some f(t). This reduces, in
t)), which tells us that circles centered on the z-axis are

noo_

log(y') = log(y)+c _ Yoo — y= e
Y

To find the rest, suppose that z(t) = g + A cos(f(

t
both geodesic equations, to f”(t)/(f"(t))? = cot(f(
also geodesics.

Y

4 Digressions and distances

We take a small detour to talk about two related topics. The first is that of volume forms.

4.1 Digression one - volume forms

Recall that a manifold M is termed orientable if there exists a smooth n-form p € Q™ (M) such that p, # 0 for

all p e M, for p, € A"(T;M). Such an n-form, which may or may not exist, is termed a nowhere-vanishing
n-form.

Proposition 4.1.1. Suppose that M is orientable and connected. There exist exactly two equivalence

classes of orientation forms, where p ~ p off p/fu’ for some f € o(u), f > 0. The orientation class of y is
then denoted by [f].
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Definition 4.1.2. An orientation on M (for M orientable) is a choice of orientation class. An oriented
manifold is an orientable manifold together with a choice of orientation class.

Remark 4.1.3. Suppose that M is compact and oriented. Then we can integrate n-forms on M. Let
we Q" (M) and [,, w € Ryg. Then Stokes’ theorem tells us that

M=0) = /dw:O
M

So if f: M™ — N™ is an orientation-preserving diffeomorphism,

/ w= ffw
F(M) M

Definition 4.1.4. Let M be orientable. A volume form on M is a choice u of a representative of the given
orientation class. The volume of M (for M compact) is defined to be

Vol(M) = /M I

Clealy the volume depends on the chosen volume form. Next note that if (M, 1) is a compact manifold with
a volume form, then we can define the integration of smooth functions over M as:

/Mf - /M fu for f e C=(M)

Remark 4.1.5. Suppose (M, g) is an oriented Riemannian manifold. Then there exists a canonical choice
of volume form g in the given orientation. It has the property that

M, =(e1,...,en) ==£1

for ey,...,e, an oriented orthonormal basis of T,M. This M is termed the Riemannian volume form
associted to g and the appropriate orientation class. Note that in local coordinates with an oriented chart,
we have that

pw=fdz* Ao Adz"

for some f € C°(U). We can relate the local orientable orthonormal frame {ej,...,e,} to the oriented
coordinate frame {%, e 8%} by
7]
3{5’ Z and €; = ZijW and Sik = ZPiijk
k J

Plugging this into the definition of u, we get that

0 0 0 0
l=uler,....,en)=p (ZQlkiM’“"ZQ"’“m> = det(Q)p <8a:1"“’(‘3x”> = det(Q) f

The associated metric g is then given as

o 0
9ij =9 ((%ia 81:’) =g (; Pikek,;swee> ZPMPJZ glex,er) = ;Pikpjk = (PPT);;

=0k

And det(g) = det(PPT) = det(P)? = 1/det(Q)?, so f = /det(g
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Definition 4.1.6. Let (M, u) be a manifold with a volume form. Define div : I(T M) — C*(M) by, for
X € I(TM),
div(X)p=d(Xdp)=d(Xdp)+ Xdp=Lxp
=0
This makes it clear that div is R-linear, and that div(fX) = fdiv(X).

Example 4.1.7. Consider (R, g). Let i be the Riemannian volume form of g, with ji = dz* A --- A d2™.
Then

div(X)p=d(Xdp) = <Z %); ) dz' Ao Ada™

Theorem 4.1.8. [DIVERGENCE THEOREM]
Suppose (M, p) is a compact manifold with a volume form. Then [, div(X) = 0.

Proof: Note that

/M div(X) = /M div(X)p = /M d(Xp) =0

The first equality follows from the definition of an integral of a function, and the last follows by Stokes’
theorem. ]

Remark 4.1.9. Now suppose that div(X) = 0. Let O; be the (global) flow of X, s0 ©, : M — M is a

diffeomorphism. Then
vol@,() = [ = [ epu= [ w=volan)
0:(M) M M

*

The second-last equality follows as %@tu = —Lxp = —div(X)u = 0. Hence OFp = Ofu = p, so p is
invariant under ©; for all t.

In summary, we now have that if X in divergence-free (i.e. div(X) = 0), then the flow ©, : M — M
preserves the volume, or Vol(0:(M)) = Vol(M). We say that a diffecomorphism of M that is the flow of a
divergence-free vector field is called a volume-preserving diffeomorphism. As an aside, note that M has at
least as many divergence-free vector fields as the first Betti number of M.

4.2 Digression two - Lie groups

In this section, we will show that every compact Lie group has a bi-invariant Riemann metric. Later, we will
compute the geodesics and curvature on compact Lie groups with respect to a bi-invariant metric.

Remark 4.2.1. Let G be a Lie group. For all a € G,

L,: G — G R,: G — @G
g — ag g — ga

are both diffeomorphisms of G with (L,)™! = L,~1 and (R,)"! = R,-1. As (ag)b = a(gb), it follows that
RyoL, = L, 0o Ry, so L, and Ry commute for all a,b. Define conjugation by a to be I, = L, o R -1, so
I.(g) = aga™!, so it too is a diffeomorphism. Note that I,(e) = e and 1,(g9)I,(h) = I,(gh), so I, : G — G is
a Lie group automorphism. As it is a diffeomorphism, we can use it to push forward vector fields.

Proposition 4.2.2. The map (I,)* maps the space of left-invariant vector fields to itself, i.e. (I,)* : g — g.
Proof: Let X be left-invariant, so (Ls).X = X, and

(La)+((Rp)+ X) = (Rp)«((La)« X) = (Bp)u X and  (La)«X = (La)s(Rq-1) X = (Ra-1)« X
So it indeed takes left-invariant vector fields to left-invariant vector fields. |
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Proposition 4.2.3. For a € G, let (I,). = Ad(a) : g — g be the adjoint map. Then

1. Ad(a) is an automorphism of g
2. Ad: G — GL(g) is a homomorphism of groups
3. Ad is smooth

Proof: 1. For z,y € g, we have that
Ad(a)[X,Y] = (1)« X, Y] = [(10)+ X, (1,).Y] = [Ad(a) X, Ad(a)Y]
Note that Ad(a) = (I,)« is linear with (Ad(a))~! = Ad(a!). So the map is an automorphism of the vector
space g preserving Lie brackets.
2. For this, observe that
Lap(g) = (ab)g(ab) ™" = (ab)g(b™"a™") = a(bgb™'a™! = L.(Is(9))
So Iy = I, 0 Iy, hence (Iap)x = (1)« © (Ip)«, or Ad(ab) = Ad(a)Ad(b), so Ad is a group homomorphism.
3. Consider the map G x G — G by (g, h) +— ghg~'. This is smooth in g, h, so by fixing g, Ad(g) = (I,). is
the Jacobian of this map at (g, e), in local coordinates. Hence it is also smooth. |
Definition 4.2.4. Let o be a smooth (k,0)-tensor on G. Then for all a,g € G,
o is left-invariant <= (Lq)«049 = 0y
o is right-invariant <= (R,)*04q = 0y
o is bi-invariant <= o is left- and right-invariant

Proposition 4.2.5. Let 0 : G — TF(TG) be a section of TF(TG), so wo o = idy, i.e. o, € TH(T,G). If o
is left- or right-invariant, then o is smooth.
Proof: Let Ey, ..., E, be alocal frame for a smooth manifold M (that is, F1, ..., E, are smooth vector fields

on some U C M and a basis of T,M for all p € U). Suppose that o is a section of TF(TM). Then o is
smooth iff o(E1,..., Ey) is a smooth function on U for all i. Let n = dim(o) and Ej, ..., E, be a global
frame of left-invariant vector fields. As

Uag (Ell |ag rc Eik |ag) = ng ((La)* E’il |ag LA (La)* Elk |ag>
= ((La)"0ug) ( Birlug -+ Bilag )

= Gy (E|g El-k|ag) ,

the function oy,..,, = o(F1,..., E)) is constant (thus smooth), so o is smooth. The same approach works
for right-invariance. u

Lemma 4.2.6. Let 0. € TF(T.G), for e the identity element. Then:

1. there exists a unique left-invariant (k,0)-tensor o on G such that a, = 0., and a unique right-invariant
(k,0)-tensor 5 on G such that g, = o.
2. a = P on G (that is, o, determines a bi-invariant (k,0)-tensor on G) iff (Ad(g))*c. = o, for all g € G.

Proof: 1. As L, : G — G with Ly(e) = ge = g, we have that (Lg), : TeG — TeG, so (Lg-1)s : TG — TG.
Hence (Lgy-1)* takes (k,0)-tensors at e to (k,0)-tensors at g. Next define ay = (Ly-1)*0c. To see that a is
left-invariant, observe that

(La)*o‘ag =
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By the previous result, a is an isomorphism. Uniqueness is clear. Right-invariance is done similarly.
2. Suppose that «, 8 are both such tensors. Then by left-invariance,
(Ad(g))*oe = (Lgo Ry-1)"0c = (Ry-1)"(Lg)"0c = 0.

If we suppose that (Ad(g))*oe = 0., then

so ag = fy for all g. |

Corollary 4.2.7. Every Lie group G admits a left- and right-invariant Riemannian metric, and a left- and
right-invariant volume form.

In particular, every Lie group is orientable, as it has a volume form.

Theorem 4.2.8. A compact, connected Lie group has a unique bi-invariant volume form g such that
vol(G, ) = 1.

*The proof is omitted*
Corollary 4.2.9. A compact, connected Lie group admits a bi-invariant Riemann metric.
*The proof is omitted*

This ends the digression on Lie groups. We will soon compute geodesics and curvature for Lie groups
with a bi-invariant metric.

4.3 The exponential map and normal coordinates

On (M, g), we can use geodesics to get a canonical chart containing p for every p € M. Let X, € T,M. We
know there exists € > 0 and a geodesic vx, : (—€,€) — M such that yx,(0) = p and (vx,)'(0) = X,,.

Definition 4.3.1. Define the space £ = {(p, X,) € TM,x, is defined on an interval containing [0, 1]}.
That is, (p, X,) € £ iff yx, is defined.

So £ is the set of all points (p, X,) in the tangent bundle for which the geodesic vx, is defined for at least
t=1.

Definition 4.3.2. The map exp : £ — M is defined by exp((p, X;)) = 7x, (1), and is termed the exponential
map. For p € M, let &, = ENT,M. For (p,X,) € &, define exp, : £, — M by exp,(X,) = exp((p, Xp))-
This is termed the restricted exponential map.

Proposition 4.3.3.

a. & is an open subset of T'M containing the zero section (i.e. (p,0,) € &€ for all p € M), and each &, is
star-shaped (convex from a point) with respect to 0, € T,M

b. if (p, X},) € T, M, then exp,(tX,) = vx,(t) for all ¢ such that either side is defined

c. exp is smooth

Before we can prove this proposition, we need the folowing lemma;:

Lemma 4.3.4. [RESCALING LEMMA]
Let V, € T,M and c,t € R. Then .y, (t) = v, (ct) whenever either side is defined.
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Proof: We will show if .y, () exists, then so does vy, (ct) and they are equal. The other direction follows by
setting V,, = ¢V, t = ct, and ¢ — 1/c.

So let y(t) = v, (t). Define 4 = 7(ct). Let I be the domain of v, so the domain of ¥ is {t : ¢t € I}. We
want to show that 7 is a geodesic, with initial point p and initial velocity cV},. Note that in local coordinates,

i 9 SO A 9
1) =7"(t) 57 F(t) =7"ct) 55|
y(t)
Evaluating at ¢t = 0, we have
i _ _ - dy 0 B dy’ 0 T
WO =20 =10 =p  FO=FO 55| =GO 5| =/ O =

It remains to check that 4 is a geodesic. As « is a geodesic,

d?Ak d’y d'yj d?+F d’y d’yﬂ
dt2 ” dt dt =c dt2 ” dt dt

We now move to the proof of Proposition [4.3.3]
Proof: The rescaling lemma with ¢ = 1 says that ~.y, (1) = 7v,(c) whenever either side is defined. So
Ytv, (1) = v, (t) for all t when both sides are defined, so exp,,(tV,) = v, (t), proving b..
<

Next let V}, € £,p Then vy, is defined on at least [0, 1], so for 0 < ¢ < 1, the rescaling lemma says that

expy (tVp) = v, (1) = v, ()
is defined for all ¢ € [0,1], so tV, € &, for all ¢ € [0,1]. Hence &, is star-shaped with respect to 0,, proving

the second part of a. It remains to show that exp is smooth and that &, is open. |

Proposition 4.3.5. Let f € C>*°(TM). Then
d
GNwxny = 2| Flx, @), (0x,) (1),
t=0
*The proof is omitted*
Proposition 4.3.6. The integral curves of G satisfy the equations

dz’ o and dyi
ar Y dt

= Y'YVl ;k(z(t),...,2"(t))
implying that

dx® da?

dt dt -

d?zh
dt?

k 1 n
+ T35 (@ (1), ..., 2" (1))
*The proof is omitted*

Proposition 4.3.7. [NATURALITY OF THE EXPONENTIAL MAP]
Let f: (M,g) — (M,g) be an isometry. Then for any p € M, the following diagram commutes:

(fo)e .
LM TypyM
€XPp CXPr(p)
M M
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Proof: The proof follows immediately from Assignment 4, question 2b, which says that if vy, is a geodesic
on (M, g) with initial data (p, X,), then fo X, is a geodesic on (M,g) with initial data (f(p), (f«)pXp). W

Lemma 4.3.8. Let p € M and consider the smooth map exp,, : &, — M, with &, open in T}, M. There exists
an open neighborhood V' C &, of 0, in T}, M and an open neighborhood W of p € M such that exp,, : V. — W
is a diffeomorphism:

Proof: This follows from the inverse function theorem. We start by noting that T),M is a vector space, so
Ty, (T, M) = T, M canonically. We also have that exp,, : TpM — M with

((expp)*)op : Top (T;UM) - Texpp(Op)M
LM T,M

Let V,, € T,M. To find what ((exp,)«)o, (V) is, we need a smooth curve o(t) in T, M with o'(t) = V},. Then
((expy,)«)o, (Vp) = (exp, 00)’(0). So take o(t) = tV,, € T, M for all t, with o’ (t) =V}, for all ¢, and ¢'(0) = V},.
Then

d d .
((exp,)«)o, (Vp) T exp,(tV,) = 7 ov,(t) =V, = ((exp,)«)o, = idr,um
t=0 t=0
So the map is invertible, and the inverse function theorem completes the proof. |

This lemma allows us to prove the existence of so-called “normal coordinates.”

Definition 4.3.9. Let Fi,...,E, be any orthonormal basis of T, M with respect to g,. This gives an
isomorphism E : R — T, M, with E(z',...,2") = 2'f;. Then we let o = E~'o (expp)*l, and ¢ becomes a
diffeomorphism from W 3 p to ¢(W) C R™, so it is a chart.

R’I’L

Then ¢ is a smooth chart for M centered at p, with ¢(p) = (0,0,...,0) € R™. This is called a normal
coordinate chart centered at p. Note that it is not unique.
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Proposition 4.3.10. Let (W, ¢) be a normal coordinate chart centered at p. Then:
a. for any V, = Vka%ha € T, M, the geodesic vy, of M with initial data (p, V}) is represented in these
coordinates by vy, (t) = (tV!, ... ,tV*) as long as v, stays in W.
b. the coordinates of p are (0,0,...,0)
c. the components of the metric g;; at p are g;;(p) = d;;
d. the Christoffel symbols vanish at p, i.e. Ffj (p)

*The proof is omitted*
Definition 4.3.11. Let € > 0 be such that exp,, is a diffeomorphism on B.(0) C T),M, where B.(0) = { X, €

T,M : |Xylg, < e}, and |v|g, = \/gp(v,v). Then we say that exp,(Bc(0)) is a geodesic ball centered at p.

Similarly, exp,,(Bc(0)) is the closed geodesic ball centered at p if B.(0) lies in the domain of exp,,. Continuing
the analogy, we call B.(0) the geodesic sphere centered at p.

Let (U, ¢) be a normal coordinate chart centered at p. Define the radial distance function r given by

Define the unit radial vector field on U \ {p} to be

0 "t od
5227@#

=1

Lemma 4.3.12. At any point ¢ € U\ {p}, % is the velocity vector of the unit speed geodesic function from
p to ¢, and hence has unit length with respect to g.

Proof: Let ¢ € U \ {p}. In normal coordinates, ¢(q) = (x!,...,2"). Consider F(¢) = (ta!,... tz™), which

is a smooth curve with 7(0) = 0 (so v(0) = p) and F(1) = («!,...,2") (so (1) = ¢). From part d. of the
previous proposition, v is a geodesic strating at p. Then we have that

Y (t) = & 9 =7 0 :rg
dt Ozt ozt or’
o 0 a|?
/ 2 _ / ’ _ =) 2
PO = o070 =g (rmr ) =7 | o

g

Recall that geodesics have constant speed, so

.0 .0 L
WP =g((t),7Y 1) =g <x’axi,x]aﬂ.> = z'el gy

At t =0, gij(p) = &;;. Hence r?[ 2|2 =12, s0 | 2|, =1, and |7/(0)| = 2’2’ 6;; = r?. [ ]

Definition 4.3.13. Let W C M be open. Then W is called a uniformly normal (or totally normal) subset
of M iff there exists 0 > 0 such that W C exp,(Bs(0)) for all ¢ € W.

So W is uniformly normal if it is contained in a geodesic ball of radius ¢ around each of its points.
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Lemma 4.3.14. Given p € M and any open neighborhood U > p, there exists a uniformly normal neigh-
borhood W of p such that W Cc U.

*The proof is omitted*

4.4 Distances and parametrization

Definition 4.4.1. Let (M, g) be a Riemannian manifold. A smooth curve segment on M is a smooth map
v : la,b] = M. That is, it is the restriction of a smooth curve on M to a closed bounded interval.

M
Definition 4.4.2. Let y[a, b] be a smooth curve segment. The length of ~y, denoted by L(7), is defined to be
b
L(vy) = / 17 (5)lg, 0y ds = (integral over [a,b] of the speed of )

Note that L(y) depends on the metric g on M. Clearly L(y) > 0.

Definition 4.4.3. Let ¢ : [¢,d] — [a,b] be a smooth map with a smooth inverse. We say that ¢ is a
forward reparametrization (or backward reparamaterization) if it is orientation preserving (or reversing), i.e.
(p«): > 0 for all ¢ € [c,d] (or (¢«) <0 for all t € [c,d]).

Let v : [a,b] — M be a smooth curve segment. Let ¢ : [¢,d] — [a,b] be a parametrization. Then ¥ =~y o ¢ :
[e,d] = M is called a reparametrization of ~.

Lemma 4.4.4. The length of a curve is independent of parametrization, i.e. L(y) = L(¥).

Proof: Let t = ¢(s) and 4 = v(p(s)) = y(t). Then

¥(5) = oy ()

)= | | e,

Putting this together, we have that

d d b
L) = [ Wl ds= [ el = [ Wold-10)
|

Definition 4.4.5. A smooth curve v : I — M is termed a regular curve if ¥'(t) # 0, for all £ € I, where
Oyt € Ty M-

Remark 4.4.6. A curve v is regular iff it is an immersion, as (v.); (% |t) = v/(t), where (vi)¢ : Tul —
T’y(t)M'

Also note that all non-constant geodesics are regular (by the constant speed criterion).
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Definition 4.4.7. An admissible curve on M is a piecewise-regular curve segment. That is, it is a continuous
map 7 : [a,b] = M such that there exists a finite subdivision ¢ = ap < a3 < -+ < a = b of [a,b] and
<p|[ai717ai] ¢ [ai—1,a;] = M is a regular smooth curve segment.

1N s , _ velocity from
V(@)= lm (] = I

t—a;

PN 1 , _ velocity from
v(ai) = hm+ 'l = the right

t—>ai

This definition implies that the curve has a well-defined non-zero one-sided velocity vector when approaching
v(a;) from either side (but they may not be equal), as indicated to the left of the diagram.

We also allow trivial (constant) curves to be admissible.
Definition 4.4.8. Let v be an admissible curve. The length of v is L(y) = Zle LVa;_1,000)-

Definition 4.4.9. A reparametrization of an admissible curvey : [a,b] — M is a homeomorphism ¢ : [¢, d] —
[a, b] with a subdivision ¢ = ¢y < ¢y < -+ < ¢ = d such that ¢l — lai—1, ;] is a reparametrization of

i—1,Ci]
the previous sets.
Note that the length of admissible curves is invariant under reparametrizations.

Definition 4.4.10. Let v : [a,b] =& M be an admissible curve. Define a function s : [a,b] — R by
s(t) = L(Vj) = fat |7/ (¢)| dt. This is termed the arc length of v from 0 to ¢.

M

The fundamental theorem of calculus says that % = |v/(s)|,, which is the speed of 7 as 7(s).
Lemma 4.4.11. Let 7 : [a,b] = M be an admissible curve. Let £ = L(). Then

a. there exists a unique reparametrization ¥ : [0,¢] — M of v such that ¥ is a unit speed curve, i.e.
|7(s)| =1 for all s

b. if 4 is any unit speed curve whose domain is of the form [0, ¢], then s(¢) = ¢ for 4
Hence unit speed curves are said to be parametrized by length.

The proof for the above lemma follows by noting that % > 0, so s(t) is invertible. Finding the inverse
t = t(s) will give the required parametrization.

Remark 4.4.12. Let « : [a,b] — M be an admissible curve and f € C*°(M). Counsider the integral of f
over vy with respect to length. We denote this by

Lf@-LUmwmwt
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Lemma 4.4.13. Let ¢ : [¢,d] — [a,b] be a reparametrization of 4. Then

fogp
= qop

2y
|

b d
/ FOI ()] dt = / )5 ()] du

Proof: Same as above. |

Definition 4.4.14. A continuous map V' : [a, b] — T'M such that V' (t) € T, M for all ¢ is called a piecewise
smooth vector field along + if there exists a (possibly finer) subdivision a = a9 < @1 < -+ < ay = b such
that V' is smooth on each [a;_1, a;].

Given an admissible curve v and V, € T’,(q)M, we can parallel transport V,, along v to get a piecewise
smooth vector field V along v with V(a) = V.

Definition 4.4.15. Let (M, g) be connected, and p,q € M. Define the distance d(p, q) between p and ¢ by

d(p,q) = inf {L(v)}

all admissible curves v from p to ¢

We need to show that this is well defined (i.e. there exists an admissible curve between p and ¢). This is clear
by noting that as M is connected, there exists a continuous path « : [a,b] — M with a(a) = p, a(b) = q.

Further, a([a, b]) is compact in M, so there exists a finite subdivision ¢ = ag < a1 < --- < a = b such that
a([a;—1,a;]) is in a domain (coordinate ball) of a single chart.

o; !

Then replace each a|[ai71,ai] by a smooth path in coordinates to get an admissible curve . So there exists an
admissible curve v from p to ¢, hence d(p, q) is well-defined. Equivalently, d(p, ¢) > 0, and d(p, q) = d(q,p).

Theorem 4.4.16. In the sense of metric spaces, d is a metric. The metric space topology determined by d
is the same as the original manifold topology.

Proof: We need to show that d(p, q) < d(p,r) + d(r,q) for all p,q € M and d(p,q) = 0 iff p = ¢q. Consider:

gi! r 72

Here 1 is an admissible curve from p to r and <5 is an admissible curve from r to ¢. Moreover, it is clear
that L(y2-v1) = L(7v2) + L(v1) and d(p, q) < L(v2) + L(71). Taking the infimum avor all ; from p to r and
the infimum over all vo from r to g, we get that d(p,q) < d(p,r) + d(r, q), as desired.
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Next we show that if p # ¢, then d(p,q) > 0. The idea is to compare Riemannian distance to Euclidean
distance in cordinate balls. So let p € M, and let (x!,...,2™) be normal coordinates centered at p. As in the
proof of the uniformly normal neighborhood lemma, there exists a closed geodesic ball exp(B,(0)) of radius
€ centered at p, and ¢, C' > 0 such that

clValg 2 [Vglg S C|Vglg ¥V Vg € TyM, q € exp(Be(0))

From the definition of length, for any admissible curve 7 whose image is in exp(B(0)), we have that
cLg(Y(< Ly(7) < CLg (7).

a(to)

exp(Bc(0)) 9

If p # q, by shrinking e if necessary, ¢ & exp(B.(0)). Next, let « : [a, b] be any admissible curve from p to g.
Then o must intersect the geodosic sphere exp(B.(0)), as the complement of exp(9B(0)) is disconnected,
and p, g lie in different components, as shown above. Let tg € [a, b] be the first time in [a,b] where a(ty) €
exp(0B.(0)). Then

Lg() = Ly(al(y 41) = cLy(alf, 4,)) = cdg(p, a(to)) = ce > 0

So d(p,q) > €, hence p # ¢ implies that d(p, q) # 0, so we do indeed have a metric.

Finally, a basis for the manifold topology is given by small “Euclidean balls” in open sets of the form
exp(Bs(0)). The metric topology of d is generated by small metric balls. This shows that the topologies are
the same, so each open set in one topology is an open set in the other. ]

Remark 4.4.17. Every smooth manifold is metrizable.

Definition 4.4.18. Let (M, g) be a Riemannian manifold. An admissible curve v on M is called minimizing
if L(y) < L(¥) for all admissible curves 4 with the same endpoints as 7.

a v b

That is, v is minimizing iff L(vy) = d(v(a), (b)), which follows from the definition of distance. Note there
need not exist a minimizing curve. If it exists, it may not be unique.

We would like to prove that a minimizing curve is a geodesic. The idea is to use the calculus of variations.
If we consider I'y a family of curves between p and g such that v = I'y is minimizing, then we should have

that 4| _ L(I';) = 0. Let’s formalize this approach.

Definition 4.4.19. An admissible family of curves is a continuous map I' : (—e, €) X [a,b] — M such that
there exists a finite subdivision a = a¢p < --- < ap = b such that I" is smooth on (—e¢,¢€) x [a;—1,a;] and
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T(t) =T'(s,t) is an admissible curve on M for each fixed s € (—¢,€).

S I

If T is an admissible family, a vector field along T' is a continuous map V : (—e,€) x [a,b] — T M such that
V(s,t) € Tr(s,s)M for all s,t, and V|(76¢6)><[&i,1,&i] is smooth for some (possibly finer) subdivision a; of [a, b].
An admissible family I" defines twe collections of curves:

Ls(t) =T(s,t) s is constant on the main curves

I'*(s) = ['(s,t) tis constant on the transverse curves

The main curves are piecewise smooth on [a, b], and the transverse curves are smooth on (—e,€) x [a, ] for
all £ € [a, b].

Remark 4.4.20. Further on, we will use some shorthand notation:

(0sT) (s,t) = %I‘(s, t) = %FS (t) =T(s,t) (the velocity vector field of the main curves)
(O) (s,t) = dif‘(s, t) = dift(s) = S(s,1) (the velocity vector field of the transverse curves)
s s

Note that S is continuous on (—e¢, €) X [a, b], so it is always a vector field along I'. However, T is not always
continuous at ¢ = a;, so it is only a vector field along I at points where I' is smooth. Next we will denote:
D,V = the covariant derivative of V along the transvrse curves I''s)
D,V = the covariant derivative of V along the main curves I's(¢) when T" is smooth
Lemma 4.4.21. [SYMMETRY LEMMA] - Lemma 6.3 in [Lee97]
Let I': (—€,€) X [a,b] = M be an admissible family of curves. On any rectangle (—e¢, €) X [a;—1,a;] where I’

is smooth,
D (0,T) = D¢(9,T)

That is, Ds(T) = Dy(S).

Proof: In local coordinates, we have

or! 0 or! 0
T=01I= (5,8) 5 S=0,I' = (s,t) =—
3t 8$ F(S,t) 88 8(1) F(S,t)
By the properties of the covariant derivative, we then have
ort o 9’ 0 ort orJ 0
s(T) = D; ( ot 8:16’) 050t o' ot Ds ok
ort o oIt 9 ort orJ 0
Dy(S)=D | = : 1k _Z_
«(5) = D ( D5 8z’) D105 o' D5 Of ok
The two Christoffel symbols are the same if the connection is torsion-free, which it is in this case. ]
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Definition 4.4.22. Let v : [a,b] = M be an admissible curve. A wvariation of + is an admissible family of
curves I' : (—e€,€) x [a,b] = M such that v(t) = Ty(t) = T'(0,¢). It is termed a proper variation (or a fized
point variation) if Ts(a) = v(a) and Ts(b) = v(b) for all s € (—e¢,¢€).

T_.(t)
a variation of ~ a proper variation of ~y

The variation field V of a variation ' is V = 9,I" = S, the velocity vector field of the transverse curves. A
velocity vector field along v is called proper if V(a) =0 € T, ()M and V(b) = 0 € Ty, M. It is clear that
the variation of a proper variation is a proper vector field along .

Lemma 4.4.23. - Lemma 6.4 in [Lee97/
If ~ is admissible and V is any vector field along 7, then V is the vector field for some (non-unique) variation
T" of 7v. Moreover, if V is proper, the variation I' can be taken to be proper as well.

Proof: Define T'(s,t) = exp(sV(t)), i.e. we follom the geodesic starting at () with initial velocity v(t) €
Ty M for a time s. Since [a,b] is compact, there exists an € > 0 such that T is defined on (—¢,€) x [a, b].
And T is smooth on (—e¢, €) x [a;_1, a;] by the properties of the exponentiol map, for each interval [a;_1, a;] on
which V is smooth. Further, I' is continuous on the whole domain. By further properties of the exponential
map,

@D)0.6) = 1| expsV(t) = V(1)

ds | _g
So the variation field of I" is V. Moreover, if V' is proper, then V(a) = 0 and V(b) = 0 imply that
I'(s,a) =v(a) and I'(s,b) = v(b) for all s € (—¢,€). Hence I is proper. |

Theorem 4.4.24. [FIRST VARIATION FORMULA OF THE LENGTH FUNCTIONAL] - Proposition 6.5 in [Lee97]
Let 7 : [a,b] = M be any unit speed admissible curve, I a proper variation of v, and V its variation field.

Then 2| _ L(Ly) = — [V g(V. D) dt — S5 g(Vi(ai), Ary).
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Proof: We first note that the length on every subinterval is given by

a; a;
[ai_hai]) - /al g dt = /w1 T\, dt

We may integrate on any interval [a;_1, a;] where I" is smooth:

wh (

al's
ot

L (FS

I A _ [ 9(DuS).T)
[ai,l,ai]) —/ 55/ Ll dt—/ai_l o7, (9(Ds(T),T) + (T, Ds(T))) dt—/ai_l T, dt

Before we proceed, consider the following decomposition:

k

)=y 2
0

i=1

d

ds

k—1 b
L (Tl so) = = V@) 80) = [ g(ViDe) de
i=1 a

s= s=0

Now set s = 0 and recall that S(0,t) = V(¢) and T(0,t) = +'(¢). Apply the above for:

d @i
ds <o L(FS [(li—l,ai]) = /avl g(Dt(V)vpyl) dt
a; d ,
= ag(vﬁ )—9(V,Dy') | dt
ai—1
a;
= V(@' (a7)) = o(Viaia). (aF) — [ oV D) de
a;—1
Summing over all ¢ with the observation that V(ag) = V(aj) = 0, the desired formula appears. |

Theorem 4.4.25. - Theorem 6.6 in [Lee97]

Suppose that v is a minimizing curve between two points p,q € M. Without loss of generality, v has unit
speed parametrization, and is thus a geodesic.

Theorem 4.4.26. [GAUSS LEMMA] - Theorem 6.8 in [Lee97]

Let U = exp,(B;(0)) be a geodesic ball centered at p € M. The unit radial vector field % = %iazi is
orthogonal to the geodesic sphere exp,,(0B5(0)) for all § < e.

Proof:
Corollary 4.4.27. - Corollary 6.9 in [Lee97]
Let (z',...,2") be normal coordinates ceneterd at p, on some geodesic ball U = exp,(Bc(0)). Let r =

V> (27)2, which is smooth on U \ {p}. Then grad(r) = Vr = £ on U\ {p}.
*The proof is omitted*

Proposition 4.4.28. - Proposition 6.10 in [Lee97]
Let p € M, and ¢ be contained in a geodesic ball centered at p. Then up to reparametrization, the radial
geodesic from p to ¢ is the unique minimizing curve from p to q.

*The proof is omitted*

Corollary 4.4.29. - Corollary 6.11 in [Lee97]
Within a geodesic ball centered at p € M, the function r(z) = /Y., (2*)? is the distance function from p
to z, i.e. d(p,z) = r(x).

*The proof is omitted*

So far, we have shown that if ¢ lies in a geodesic ball centered at p (i.e. if ¢ is in the image of expp),
then there exists a unique minimizing curve ~ from p to ¢, and this curve is a radial geodesic, and r(q) =

d(p,q) = L(v).
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Definition 4.4.30. An admissible curve  is locally minimizinig if for any ty € I, there exists a neighborhood
U of ty in I such that 7|, is minimizing between any two points on 7|;.

Theorem 4.4.31. - Theorem 6.12 in [Lee97]
Every geodesic is locally minimizing.

*The proof is omitted*

Definition 4.4.32. Let (M, g) be a Riemannian manifold. Then (M, g) is geodesically complete if every
geodesic is defined for all t € R. This is equivalent to saying that the geodesic vector field is a complete
vector field.

Theorem 4.4.33. [Hoprr, RINOowW]| - Corollary 6.11 in [Lee97]
Let (M, g) be a connected Riemannian manifold. Then (M, g) is geodesically complete iff it is complete as
a metric space.

*The proof is omitted*
Definition 4.4.34. Let v : [0,b] — M be a geodesic. We say that v aims at q if:

i. v is minimizing from (0) to v(b)
Note that if v were the initial segment of a minimizing geodesic from v(0) to ¢, then v aims at q.

Corollary 4.4.35. - Corollaries 6.14-6.16 in [Lee97]
The following are corollaries to the Hopf-Rinow theorem:

1. If there is p € M such that exp, is defined on all of T;, M, then M is complete
2. M is complete iff any two points in M can be joined by a minimizing geodesic
3. If M is compact, then every geodesic can be defined for all ¢t € R

*The proof is omitted*

5 Curvature

5.1 Flatness and curvature

Recall that (M, g) is flat iff it is locally isometric to (R™, g). We proved that this is equivalent to the existence
of local coordinates such that the coordinate frame {%, ceey a%} is orthonormal. We are now looking for
a coordinate-free (“geometric”) way to characterize flatness.

Remark 5.1.1. In (R",g), any tangent vector V,, € T,R™ may be extended uniquely to a parallel vector
field V € I'(TR™). Let {E1,...,E,} be the standard global orthonormal frame, so V,, = aiEi|p for a; € R.
So V' is a smooth vector field in R"™.

Let (M, g) be a Riemannian manifold with p € M, V,, € T, M. Does there exist a smooth vector field V in a
neighborhood V' of p such that V|, =V}, and VxV =0 for all vector fields X on U? For (xt,...,2") local
coordinates centered at p, the situtation looks as below.
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Here p = (0,0) and g = (a1,az3). If such a V did exist, then V|q =V, would be the result of parallel transport
of V,, along every path in U from p to q. Using this idea, define V, a smooth vector field on U by

f/|q = parallel transport of V,, from (0,0) to (a1, 0) and then to (a1, a2).

The field V is smooth because the parallel transport of it is an ODE, so it has smooth dependence on initial
conditions. If there exists a parallel extension V' of V}, to a neighborhood of p, it would have to agree with
this V we have just defined, i.e. V would have to be parallel. By construction, V 2, V = 0 at every point in

U, and V o V = 0 on the z-axis. For V to be parallel, we need V .. V=0at every point (this will imply

that VXV =0 for any X). Solet W =V 2 V, so W is a smooth vector field on U. Note that W/, , =0,
so by the uniqueness of the parallel transport W =0 is an eigenvalue. Finally observe that

Vo W=V (vﬁf/) =V (Vai V) =V (0)=0.

Hence if V 2 and V 59, commute, we can find such a parallel extension. But where is it true?
On (R™, g) Wlth V= VlE € v(TR"), we have that

Vx (VyV) = XY (VY)E;
TV = Y(VE; and Vx (VyV)=Vy (VxV) = XY (V))E; - Y(X(V))E;
v ' = (X, Y]V)E;
ﬁ[}gy]v

This shows that for the Euclidean connection V of g and all vector fields X,Y, Z on R™,
Ty (Vv2) — Yy (VxZ) — Vixy Z = 0.
This motivates the following definition.

Definition 5.1.2. Let (M, ¢g) be a Riemannian manifold. The Riemann curvature tensor R is a type (3,1)
tensor on M, such that if X,Y,Z € T'(T'M), then R(X,Y,Z) = R(X,Y)Z € I'(T M), where

R(X,Y)Z =Vx(VyZ) -=Vy(VxZ) = Vixyv|Z
Remark 5.1.3. In local coordinates, we have that
R = Rijpeda’ ® da? @ da® @ da*
o 0 g 0 g o0 0 0
Rijre =9 (R (axam) ww) =R <axaxaxkaxe>

The symmetries of the tensor are then given by

Rijie = —Rjike = —Rijer = Ryeij

Theorem 5.1.4. - Theorem 7.3 in [Lee97]
The Riemannian manifold (M, g) is flat iff R = 0.

*The proof is omitted*

Remark 5.1.5. One may define the curvature Ry of any connection on TM (by the same formula). We
proved above that Ry = 0 iff every point p € M lies in a neighborhood U on which there exists a parallel frame
{F1,...,En}, and E; € T'(TU) is linearly independent at every point, and Vx E; = 0 for all X € T'(TU).

With the theorem, we get more - if V is metric-compatible, this frame can be takn to be orthonormal. If V
is torsion-free, this frame can be taken to be a coordinate frame.
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Proposition 5.1.6. - Proposition 7.4 in [Lee97]
Let (M, g) be a Riemannian manifold and R the (4,0) curvature tensor of g. Let X,Y,Z € T'(TM). Then

a. R(X,Y,Z,W)=—R(Y,X,Z,W)

b. R(X,Y,Z,W) = —R(X,Y,W, Z)

d. R(X,Y,Z,W)+R(Z,X,Y,W)+ R(Y,X,Z,W) =0
c. R(X,Y,Z,W)=R(Z,W,X,Y)

*The proof is omitted™
Note that a. is true for all connections, i.e. the (3,1)-curvature tensor is always skew-symmetric in its
first two arguments. Further, b. is true for any connection compotible with the metric.
Remark 5.1.7. The symmetries of the tensor are then given by
Rijie = —Rjire = —Rijor = Ryeij

It follows from c. above that if we fix any of the four arguments and cyclically permute the other three, the
sum is zero. We then conclude that there are far fewer than n* independent components.

5.2 Sectional curvature

Suppose (V, g) is a finite-dimensional real, positive-definite inner-product space. Given v, w € V, define

w
area of the
2

lu Av|* = |ul*|w|]® — g(u,w)? = parallelogram —
spanned by u,w U

=det ity )

Definition 5.2.1. Let L, be a 2-dimensional subspace of T,M. Let X, Y, be any basis of L,. Define the
sectional curvature of (M, g) at the 2-plane T,,M to be

R(Xp, Yy, Yy, Xp)

K(L,) =
L) = =%, AT, 2

To show that this is well-defined, suppose that Xp, )7,) is another basis of L,. We need to show that

R(XZ”}/I”YP?XP) R(Xp,)}p,?p,)zp)

|Xp A Y2 [Xp AV 2

From linear algebra, we know that any two bases are related by a finite sequence of the form
(X,Y) = (¥, X)
(X,Y) = (AX)Y) A#0
(X,Y) > (X +AX)Y) AeR
The Riemann curvature determines all the sectional curvatures. We will prove the converse, that knowing

all K, determines R,.

Lemma 5.2.2. Let (V,( -, - )) be a finite-dimensional vector space. Let R, R’ be two tri-linear maps
V>3 5V with (X,Y,Z,W) = (R(X,Y, Z),W) and (X,Y, Z,W) = (R/(X,Y, Z),W) such that (X,Y, Z, W)
is skew-symmetric in X,Y and Z, W, with

(X, Y, Z,W)=(Z,W,X,Y) and (X, Y, Z W)+ (Z, X, Y, W)+ (Y, Z,X,W) =0
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and similarly for (X,Y, Z,W)’. For X, Y linearly independent and o = span{X,Y} with

_ XYy Xy
CXPYPE = (X, Y)Y

(X, Y)Y, X)

Ko) = XpvE - (x, v

and K'(0)

if K = K’ for all o, then R = R'.
*The proof is omitted*
Corollary 5.2.3. If we know all the sectional curvatures K, (o,) for all o, € T, M, then we know R,,.

Lemma 5.2.4. [2ND BIANCHI IDENTITY]
Let UV, W, X,Y,Z € I(TM). Then

(VuR)(X,Y, VW) + (Vv R)(X, Y, W,U) + (VwR)(X,Y,U,V) = 0.
*The proof is omitted*

Proposition 5.2.5. The trace trace(A) = g% (Ae;, e;), where g/ = (e?,e’), and {e!,...,e"} is a dual basis
of V*.

*The proof is omitted*
Definition 5.2.6. The Ricci tensor Ric is a (2,0)-tensor on M, defined by (Ric),(X,,Y,) = trace(Ap).
Proposition 5.2.7. The Ricci tensor is symmetric, i.e. Rj; = Ry;.

*The proof is omitted™

Definition 5.2.8. The scalar curvature is the trace of the Ricci curvature.

5.3 Einstein manifolds

Definition 5.3.1. A Riemannian manifold (M, g) is called FEinstein if Ric = fg for f € C*°(M).

Then Rj, = fgjk, so R = Rjkgjk = fgjkgjlc = fé,’j = nf. Hence if (M, g) is Einstein, then this function f
must be R/n. This gives the Finstein equation:

Ric = Eg.
n

Remark 5.3.2. This notation was introduced by Einstein in general relativity. The equations of general

relativity say that Ric — % g =T, for T the stress-energy tensor, which measures the matter in the universe.
In a vacuum, T' = 0, so Ric = %g = fg, hence % = % So if n # 2, then R = 0. Therefore any solution to
the stress-energy tensor equation in a vacuum must have Ric = 0. This situation is called Ricci-flat.

Remark 5.3.3. We can apply the above observations to the 2nd Bianchi identity. First contract with ¢*
and use the fact that V is g-compatible.

Vo (Rijieg™) + Vi(Rijemg™) + Ve(Rijmrg™) = 0
Vi Rik) = Vi(Rjm) + V(g Rijme) = 0
Next contract with g7*.
ViR — ¢*VRjm — ¢"“ViRiy, = 0
9"V pRee = ViR

The last expression is known as the twice contracted 2nd Bianchi identity. It follows that div(Ric) = %VR,
where V is the gradient operator.
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Proposition 5.3.4. If (M", g) is Einstein and n > 3, then R is constant (i.e. the scalar curvature is
constant).

Proof: So we have that R;; = %gij and Vi R;; = %(VkR)gij, SO
9"V Ry; = L(ViK)gig*
=1V,R =1V,R.

Then if n # 2,

Vi R=0Vjif VR=0
iff dR=0
iff R = constant.

Remark 5.3.5. Note that when N = 2, R may be non-constant. In fact, every such Riemannian manifold
is Einstein. For K : M — R, we have that
R(X,Y, Z,W) = g(X,W)g(Y,Z) - g(X, Z)g(Y, W)
R(X,Y,Y,X) = K(X*|Y]” - g(X,Y)?)
=KR(X,Y,Y, X).

Hence if n = 2, Rijie = K(giegjr — 9ingje), where K is the sectional curvature function. In the case of the
Ricci curvature, we have that Rj, = Rijkegu = K(2g9jx — gjx) = Kgjr. So any Riemannian 2-manifoldis
Einstein with Ric = K, for K the sectional curvature.
Remark 5.3.6. Consider some other remarks about Einstein manifolds.

- It is still a wide open question on which manifolds admit Einstein metrics.

- There exists a variational characterization of Einstein manifolds, called the Einstein—Hilbert functional

% - space of .Riemannian SR,
metrics on M

where H(g) = fg Rypg is called the total scalar curvature.

- Fixing some metric go on M, we can talk about the conformal class of gy, denoted by [go], which is the
set of all metrics of the form €2/ gy for some f € C°°(M). When restricted to a fixed conformal class, critical
points of H are the constant scalar curvature metrics VR = 0.

The Yamabe conjecture asked, given go on M, if there exists a metric g = e2fgo (i.e. conformal to go) such
that go has constant scalar curvature. It was solved in the affirmative for dimension 2, but counterexamples
have been constructed for dimensions > 3.

5.4 Geometric interpretations of the Riemannian curvature

Remark 5.4.1. Let (z!,...,2™) be local coordinates centered at p. Let X,,,Y, € T,M be linearly inde-
pendent. Define r(s,t) = exp,(sX, +tY}). This is a diffeomorphism of an open rectangle in (s,?) from the
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plane containing (0, 0) onto an open neighborhood of p € M. This may be visualized as below.

Let p denote the path from p to r(sg,0) then to r(sg,to) by the lines indicated, and p the path from p to
(0, o) then to 7(so,to) also by the lines indicated. Fix some Z, = Zka%|p € T, M, and let Z(s,t) be the
parallel transport of Z, to r(sg,to) along p and Z(s, t) the parallel transport of Z, along p.

0 0
_ 7k _ _ 7k
Dol (Zo) = Z7°(s) 53 oo Z(s:t) = Wy (Z(5,0)) = Z(s:8) 55 o
dz* des . dzk det .
2 = Tk 5077 S8 1k ISs0 g ¢
ds i ds dt g 2 (1)
s (Z,)=Z") 9 Z(s,t) =11;,(Z(0,t)) = Z*(s,t) 9
P1lfo, ) \ 7P oxk r(0,1) ’ P2 ’ ’ Oxk r(5,8)
dz* x dSh dz* p A€l o
@ - s ” o~ T 2

Above, p; denotes the path from p to r(sg,0) and ps the path from r(sg,0) to r(so, o). The decomposition
is analogous for p. After some more calculation, we find that

ZF(s,t) — ZF(s,t) = 04+ 0 — (R(X,, Y,) Z,)* 4+ O(3),

where the first two zeros are the Oth and 1st order terms in the Taylor expansion. So in general,

Z(s,t) — Z(s,t) = —R(Xp,Yp) Zp(s,t) + O(3).

In other words, the curvature is a local obstruction to the path independence of parallel transport. This
may be formulated in a more precise manner, as below.

Theorem 5.4.2. [AMBROSE, SINGER]

Let M™ be a connected and simply-connected manifold with V the Levi—Civita connection on T'M. Then
the homolonomy group H of V at p € M is a compact Lie group. The Lie algebra b is generated as a vector
space by the curvature operator R(X,,Y,) for all X,,,Y, € T,M.

Remark 5.4.3. There is another interpretation of curvature, specific to the Riemann curvature tensor.Let
[+ L*¥ — M™ be an immersion, so (f)p : TpL — Ty M is injective for all p. Then further, (f.),(T,L) C
TeyM.

f(p)
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Now we may view L as a subset of M with ¢ : L — M the inclusion map, which is a smooh 1-1 immersion.
If g is a metric on M, then i*g = g|, is a metric on L. Note if p € L, then T,M = T,,L & (T,,L)*, where the
second term is the orthogonal complement with respect to g. Using this structure we can make some new
definitions.

Definition 5.4.4. Let N,L = (T,L)* be the normal space to L at p. Let NL = Uoer
bundle of L in M, essentially then bundle of (n — k)-dimensional vector spaces over L.

N,L be the normal

Remark 5.4.5. Given p € L, we can find a local frame {F1,...,E,} over some U 3 p such that when
restricted to UN L, {Ey, ..., Ex} is a frame for T'L, so then {Exy1,...,E,} is a frame for NL. So consider
a vector field X along L, meaning that X € I'(¢*(TM)) =T(TM|,) =T(TL&® NL). Then given X,, € T,,L,
we can decompose it as
X, =XI'+x).
m m
T,L N,L

Let VM be the Levi-Civita connection of g on M. Let X,Y be vector fields along L. Then
VEY = (VAY)" + (Vi)

Proposition 5.4.6. With reference to the notation above,

i. (X,Y)— (VHEY)T is a connection on TL and is metric-compatible and torsion-free. By uniqueness,
(V¥Y)" = vkY.

ii. (V%Y)N = B(X,Y) = B(Y, X) is symmetric in X and YV

iii. For V € I'(NL), g (V¥V,Y) = —g(V,B(X,Y)). This is called the Weingarten equation.

Proof: Only a sketch of i. is presented. To show that it is torsion-free, note that

(VEY)" — (V¥ x)" = (WYY - v X)" = (X, V)" = [X. V).
For metric compatibility, where X, Y, Z are all tangent to L, observe that

X(g(Y,2)) = g (V¥YV,2) + 9 (v, V¥ 2) =g (VAY)" . 2) + 9 (v. (V¥ 2)").

Corollary 5.4.7. [GAUSS]
For vector fields X,Y, Z, W along L,

RM(X,Y,Z,W) = RM(X,Y, Z,W) — g(B(X,W), B(Y, 2)) + g(B(X, Z), B(Y, W)).
This is called the Gauss equation.

Remark 5.4.8. Let (M, g) be a Riemannian manifold with p € M and o, C T, M a 2-dimensional subspace.
Let V C T, M on which exp, : V. — M. Define S = expp(V Nop), where V N o, is an open neighborhood
of 0,. Then S is a 2-dimensional immersed submanifold of M. More specifically, it is the collection of all
points on geodesics starting at p with initial velocities in o,. Now apply the Gauss equation to L = S.

Let X, € o, with v(f) = 7x,(t) geodesics, so 0 = DM+' = D[+ + B(v',7'), where 3 is the normal
component. Hence £(v/,7) = 0 at t = 0, so §(X,,X,) = 0 for all X, € 0,. By polarization (8 is
symmetric), 8(Xp,Y,) = 0 for all X,,,Y,, € 0,. Hence the Gauss equation gives that

RM(X,Y,Y,X) = RM(X,Y,Y, X)
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for all X,Y tangent to S. This may be equivalently written as K (0,) = KL (0,) for K* : S — R. Hence
ifpe M and 0, C T, M, S is 2-dimensional, and the sectional curvature KZ])VI (op) of g equals the sectional
curvature K (o,) of (S, g|g). Consider this in the following situations:

K>0 K <0 K=0

Hence the sign of K,(o,) describes the qualitative behavior of geodesics.
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Index of notation

M tangent space to M at p, EI

T projection map,

(TM) space of smooth vector fields on M, |§|

O flow on M,

LyW Lie derivative of W with respect to V,

QF (M) space of all k-forms on M,

D,V covariant derivative of the vector field V,

I1,(Vp) parallel transport of V,, along ~,

T(X,Y) torsion of two vector fields in I'(T M),

g Riemannian metric,

b, # flat and sharp musical isomorphisms,

Vf gradient of a smooth map f,

H™ n-dimensional hyperbolic space,

I volume form,

g left-invariant vector fields,

1 conjugation by g operator,

Ad(g) pushforward of conjugation by g operator,

L(v) length of a curve 7,

K(Ly) sectional curvature of M at the 2-plane L, € T, M,

N,L normal space of an immersed submanifold L in M, |60
Index
1-form, Levi-Civita, distance, [49]

acceleration, 28|
adjoint, [42]
admissible curve, [A§]

family of,
Ambrose-Singer theorem,
arc length,

backward reparametrization,
2y

bi-invariant tensor, 2]

Bianchi identity, [57]

change of basis,
chart,

normal coordinate,
coform,
commutation, [I6]
compatible connection,
complete vector field,
conformal class, B8]
conformal diffeomorphism,
conjugation, 1]
connection, 23]

compatible,

Euclidean,

Riemannian, [3§]

torsion-free, [37]
coordinate chart,

normal,
cotangent bundle,
cotangent space, [I9]
covariant derivative,
covector field,
curvature

scalar, 7]

sectional,

total scalar,
curvature tensor, |5_'5]
curve

admissible,

aims at a point, [54]

locally minimizing,

minimizing, [50]

regular, [47]

unit speed,

derivation, [
derivative, [27]
diffeomorphism,
differential, [4]
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divergence,
divergence theorem, [47]
dual basis,

dual chart,

dual coform,

Einstein equation, [57]

Einstein manifold,

Einstein—Hilbert functional,
0]

Euclidean connection,

exponential map,
exterior derivative,

F-related, [7]
family of admissible curves,
fixed-point variation,
flat, [34]
flat (b),
flow,
global,
local,
flow domain, [T7]
form,
forward reparamerization,
frame



standard global,
fundamental theorem of
Riemannian

geometry, 3]

Gauss equation,
Gauss lemma,
geodesic,
Riemannian,

geodesic ball, [40]
geodesic sphere,
geodesically complete

manifold,
global flow,
gradient,

holonomy, [3]]
Hopf-Rinow theorem,
hyperbolic space,

immersed submanifold,
immersion, |3_7|

induced metric, [33]
infinitesimal generator, [10]
injective immersion, [32]
integral curve,
invariant, [I6]

isometry, [34]

Jacobi identity, [7]

left-invariant tensor, [2]
lemma

Gauss, 53]
rescaling,

symmetry, [51]
length

of admissible curve,
of smooth curve segment,
2]
Levi-Civita connection,
Lie bracket, [7]
Lie derivative,
Lie group, [3]
local flow,
local isometry,
locally minimizing curve, 54
Lorentzian metric, [31]

manifold
Einstein, [57]
geodesically complete,
parallelizable,
smooth, 2]
topological,

metric
induced,
Lorentzian, [31]
pseudo-Riemannian, [31]
pullback,
Riemannian, [3]]
round,
minimizing curve, [50|
musical isomorphism, [35]

normal bundle,
normal coordinate chart,

normal space,
orientation, [39]

parallel

tensor, [30]

transport, [29]

vector field,
partial derivative,
partition of unity,
projection map, [0]
proper variation, [52]
pseudo-Riemannian metric,
pullback,
pullback metric,
pushforward, [

radial function, [46]
radial vector field, [46]
regular curve,
regular point,
reparametrization
backward, [47]
forward, [A7]
of a curve,
rescaling lemma,
Ricci tensor,
Ricci-flat,
Riemann curvature tensor, [55]
Riemannian connection, [3§]
Riemannian geodesic,
Riemannian metric, [31]
right-invariant tensor,
round metric, [33]

scalar curvature, [57]
sectional curvature,
sharp (%),

singular point,
skew-symmetric product,
smooth curve, [f]

smooth curve segment,
smooth manifold,
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smooth map,

smooth structure,
speed, [38]

standard global frame, [31]
Stokes’ theorem,
stress-energy tensor, |5;7|
symmetric product,
symmetry lemma,

tangent bundle, [f]
tangent space, []
tensor, [20]
bi-invariant,
left-invariant,
Ricei, (7]
right-invariant, [42]
stress-energy, [57]
theorem
Ambrose—Singer,
canonical form,
divergence, []
flow box,
Frobenius,
Hopf-Rinow,
of global flows,
fundamental, [T]]
of Riemannian geometry,
fundamental,
Picard-Lindelof, [9]
Stokes’, [A0]
topological manifold, 2]
torsion, [31]
torsion-free connection,
total scalar curvature,
totally normal subset, [46]

uniformly normal subset, [46]
unit speed curve, 48

variation, [52]
proper, [52]

variation field,

vector field, [f]
complete,
left-invariant, [7]

radial, [46]

velocity vector,

volume, [40]
volume form, [40]

wedge product,
Weingarten equation,

Yamabe conjecture,
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